1 如何加载核心扩展
1.1 单独的 Active Support
为了使初始空间尽可能干净,默认情况下 Active Support 什么都不加载。它被拆分成许多小组件,这样一来你便可以只加载自己需要的那部分,同时它也提供了一系列便捷入口使你很容易加载相关的扩展,甚至把全部扩展都加载进来。
因而,像下面这样只简单用一个 require:
require 'active_support'
对象会连blank?
都没法响应。让我们来看下该如何加载它的定义。
1.1.1 选出合适的定义
找到blank?
最轻便的方法就是直接找出定义它的那个文件。
对于每一个定义在核心扩展里的方法,本指南都会注明此方法定义于何处。例如这里提到的blank?
,会像这样注明:
定义于 active_support/core_ext/object/blank.rb
。
这意味着你可以像下面这样 require 它:
require 'active_support' require 'active_support/core_ext/object/blank'
Active Support 经过了严格的修订,确保选定的文件只会加载必要的依赖,若没有则不加载。
1.1.2 加载一组核心扩展
接下来加载Object
下的全部扩展。一般来说,想加载SomeClass
下的全部可用扩展,只需加载active_support/core_ext/some_class
即可。
所以,若要加载Object
下的全部扩展(包含blank?
):
require 'active_support' require 'active_support/core_ext/object'
1.1.3 加载全部核心扩展
你可能更倾向于加载全部核心扩展,有一个文件能办到:
require 'active_support' require 'active_support/core_ext'
1.1.4 加载全部 Active Support
最后,如果你想要 Active Support 的全部内容,只需:
require 'active_support/all'
这样做并不会把整个 Active Support 预加载到内存里,鉴于autoload
的机制,其只有在真正用到时才会加载。
1.2 Ruby on Rails 程序里的 Active Support
除非把config.active_support.bare
设置为 true, 否则 Ruby on Rails 的程序会加载全部的 Active Support。如此一来,程序只会加载框架为自身需要挑选出来的扩展,同时也可像上文所示,可以从任何级别加载特定扩展。
2 所有对象都可用的扩展
2.1 blank?
and present?
以下各值在 Rails 程序里都看作 blank。
nil
和false
,只包含空白的字符串(参照下文注释),
空的数组和散列表
任何其他能响应
empty?
方法且为空的对象。
判断字符串是否为空依据了 Unicode-aware 字符类 [:space:]
,所以例如 U+2029(段落分隔符)这种会被当作空白。
注意这里没有提到数字。通常来说,0和0.0都不是blank。
例如,ActionController::HttpAuthentication::Token::ControllerMethods
里的一个方法使用了blank?
来检验 token 是否存在。
def authenticate(controller, &login_procedure) token, options = token_and_options(controller.request) unless token.blank? login_procedure.call(token, options) end end
present?
方法等同于 !blank?
, 下面的例子出自ActionDispatch::Http::Cache::Response
:
def set_conditional_cache_control! return if self["Cache-Control"].present? ... end
定义于 active_support/core_ext/object/blank.rb
.
2.2 presence
presence
方法如果满足present?
则返回调用者,否则返回nil
。它适用于下面这种情况:
host = config[:host].presence || 'localhost'
定义于 active_support/core_ext/object/blank.rb
.
2.3 duplicable?
A few fundamental objects in Ruby are singletons. For example, in the whole life of a program the integer 1 refers always to the same instance: Ruby 里有些基本对象是单例的。比如,在整个程序的生命周期里,数字1永远指向同一个实例。
1.object_id # => 3 Math.cos(0).to_i.object_id # => 3
因而,这些对象永远没法用dup
或clone
复制。
true.dup # => TypeError: can't dup TrueClass
有些数字虽然不是单例的,但也同样无法复制:
0.0.clone # => allocator undefined for Float (2**1024).clone # => allocator undefined for Bignum
Active Support 提供了 duplicable?
方法来判断一个对象是否能够被复制:
"foo".duplicable? # => true "".duplicable? # => true 0.0.duplicable? # => false false.duplicable? # => false
根据定义,所有的对象的duplicated?
的,除了:nil
、false
、 true
、 符号、 数字、 类和模块。
任何的类都可以通过移除dup
和clone
方法,或者在其中抛出异常,来禁用其复制功能。虽然duplicable?
方法是基于上面的硬编码列表,但是它比用rescue
快的多。确保仅在你的情况合乎上面的硬编码列表时候再使用它。
定义于 active_support/core_ext/object/duplicable.rb
.
2.4 deep_dup
deep_dup
方法返回一个对象的深度拷贝。一般来说,当你dup
一个包含其他对象的对象时,Ruby 并不会把被包含的对象一同dup
,它只会创建一个对象的浅表拷贝。假如你有一个字符串数组,如下例所示:
array = ['string'] duplicate = array.dup duplicate.push 'another-string' # 对象被复制了,所以只有 duplicate 的数组元素有所增加 array # => ['string'] duplicate # => ['string', 'another-string'] duplicate.first.gsub!('string', 'foo') # 第一个数组元素并未被复制,所以两个数组都发生了变化 array # => ['foo'] duplicate # => ['foo', 'another-string']
如你所见,对Array
实例进行复制后,我们得到了另一个对象,因而我们修改它时,原始对象并未跟着有所变化。不过对数组元素而言,情况却有所不同。因为dup
不会创建深度拷贝,所以数组里的字符串依然是同一个对象。
如果你需要一个对象的深度拷贝,就应该使用deep_dup
。我们再来看下面这个例子:
array = ['string'] duplicate = array.deep_dup duplicate.first.gsub!('string', 'foo') array # => ['string'] duplicate # => ['foo']
如果一个对象是不可复制的,deep_dup
会返回其自身:
number = 1 duplicate = number.deep_dup number.object_id == duplicate.object_id # => true
定义于 active_support/core_ext/object/deep_dup.rb
.
2.5 try
如果你想在一个对象不为nil
时,对其调用一个方法,最简单的办法就是使用条件从句,但这么做也会使代码变得乱七八糟。另一个选择就是使用try
。try
就好比Object#send
,只不过如果接收者为nil
,那么返回值也会是nil
。
看下这个例子:
# 不使用 try unless @number.nil? @number.next end # 使用 try @number.try(:next)
接下来的这个例子,代码出自ActiveRecord::ConnectionAdapters::AbstractAdapter
,这里的@logger
有可能为nil
。能够看到,代码里使用了try
来避免不必要的检查。
def log_info(sql, name, ms) if @logger.try(:debug?) name = '%s (%.1fms)' % [name || 'SQL', ms] @logger.debug(format_log_entry(name, sql.squeeze(' '))) end end
调用try
时也可以不传参数而是用代码快,其中的代码只有在对象不为nil
时才会执行:
@person.try { |p| "#{p.first_name} #{p.last_name}" }
定义于 active_support/core_ext/object/try.rb
.
2.6 class_eval(*args, &block)
You can evaluate code in the context of any object's singleton class using class_eval
:
使用class_eval
,可以使代码在对象的单件类的上下文里执行:
class Proc def bind(object) block, time = self, Time.current object.class_eval do method_name = "__bind_#{time.to_i}_#{time.usec}" define_method(method_name, &block) method = instance_method(method_name) remove_method(method_name) method end.bind(object) end end
定义于 active_support/core_ext/kernel/singleton_class.rb
.
2.7 acts_like?(duck)
acts_like?
方法可以用来判断某个类与另一个类是否有相同的行为,它基于一个简单的惯例:这个类是否提供了与String
相同的接口:
def acts_like_string? end
上述代码只是一个标识,它的方法体或返回值都是不相关的。之后,就可以像下述代码那样判断其代码是否为“鸭子类型安全”的代码了:
some_klass.acts_like?(:string)
Rails 里的许多类,例如Date
和Time
,都遵循上述约定。
定义于 active_support/core_ext/object/acts_like.rb
.
2.8 to_param
所有 Rails 对象都可以响应to_param
方法,它会把对象的值转换为查询字符串,或者 URL 片段,并返回该值。
默认情况下,to_param
仅仅调用了to_s
:
7.to_param # => "7"
不要对to_param
方法的返回值进行转义:
"Tom & Jerry".to_param # => "Tom & Jerry"
Rails 里的许多类重写了这个方法。
例如nil
、true
和false
会返回其自身。Array#to_param
会对数组元素调用to_param
并把结果用"/"连接成字符串:
[0, true, String].to_param # => "0/true/String"
需要注意的是, Rails 的路由系统会在模型上调用to_param
并把结果作为:id
占位符。ActiveRecord::Base#to_param
会返回模型的id
,但是你也可以在自己模型里重新定义它。例如:
class User def to_param "#{id}-#{name.parameterize}" end end
会得到:
user_path(@user) # => "/users/357-john-smith"
控制器里需要注意被重定义过的to_param
,因为一个类似上述的请求里,会把"357-john-smith"当作params[:id]
的值。
定义于 active_support/core_ext/object/to_param.rb
.
2.9 to_query
除了散列表之外,给定一个未转义的key
,这个方法就会基于这个键和to_param
的返回值,构造出一个新的查询字符串。例如:
class User def to_param "#{id}-#{name.parameterize}" end end
会得到:
current_user.to_query('user') # => "user=357-john-smith"
无论对于键还是值,本方法都会根据需要进行转义:
account.to_query('company[name]') # => "company%5Bname%5D=Johnson+%26+Johnson"
所以它的输出已经完全适合于用作查询字符串。
对于数组,会对其中每个元素以_key_[]
为键执行to_query
方法,并把结果用"&"连接为字符串:
[3.4, -45.6].to_query('sample') # => "sample%5B%5D=3.4&sample%5B%5D=-45.6"
哈系表也可以响应to_query
方法但是用法有所不同。如果调用时没传参数,会先生成一系列排过序的键值对并在值上调用to_query(键)
。然后把所得结果用"&"连接为字符串:
{c: 3, b: 2, a: 1}.to_query # => "a=1&b=2&c=3"
Hash#to_query
方法也可接受一个可选的命名空间作为键:
{id: 89, name: "John Smith"}.to_query('user') # => "user%5Bid%5D=89&user%5Bname%5D=John+Smith"
定义于 active_support/core_ext/object/to_query.rb
.
2.10 with_options
with_options
方法可以为一组方法调用提取出共有的选项。
假定有一个默认的散列表选项,with_options
方法会引入一个代理对象到代码块。在代码块内部,代理对象上的方法调用,会连同被混入的选项一起,被转发至原方法接收者。例如,若要去除下述代码的重复内容:
class Account < ActiveRecord::Base has_many :customers, dependent: :destroy has_many :products, dependent: :destroy has_many :invoices, dependent: :destroy has_many :expenses, dependent: :destroy end
可按此法书写:
class Account < ActiveRecord::Base with_options dependent: :destroy do |assoc| assoc.has_many :customers assoc.has_many :products assoc.has_many :invoices assoc.has_many :expenses end end
TODO: clear this after totally understanding what these statnances means...
That idiom may convey grouping to the reader as well. For example, say you want to send a newsletter whose language depends on the user. Somewhere in the mailer you could group locale-dependent bits like this: 上述写法也可用于对读取器进行分组。例如,假设你要发一份新闻通讯,通讯所用语言取决于用户。便可以利用如下例所示代码,对用户按照地区依赖进行分组:
I18n.with_options locale: user.locale, scope: "newsletter" do |i18n| subject i18n.t :subject body i18n.t :body, user_name: user.name end
由于with_options
会把方法调用转发给其自身的接收者,所以可以进行嵌套。每层嵌套都会把继承来的默认值混入到自身的默认值里。
定义于 active_support/core_ext/object/with_options.rb
.
2.11 JSON 支持
相较于 json
gem 为 Ruby 对象提供的to_json
方法,Active Support 给出了一个更好的实现。因为有许多类,诸如Hash
、OrderedHash
和Process::Status
,都需要做特殊处理才能到适合的 JSON 替换。
定义于 active_support/core_ext/object/json.rb
.
2.12 实例变量
Active Support 提供了若干方法以简化对实例变量的访问。
2.12.1 instance_values
instance_values
方法返回一个散列表,其中会把实例变量名去掉"@"作为键,把相应的实例变量值作为值。键全部是字符串:
class C def initialize(x, y) @x, @y = x, y end end C.new(0, 1).instance_values # => {"x" => 0, "y" => 1}
定义于 active_support/core_ext/object/instance_variables.rb
.
2.12.2 instance_variable_names
instance_variable_names
方法返回一个数组。数组中所有的实例变量名都带有"@"标志。
class C def initialize(x, y) @x, @y = x, y end end C.new(0, 1).instance_variable_names # => ["@x", "@y"]
定义于 active_support/core_ext/object/instance_variables.rb
.
2.13 Silencing Warnings, Streams, 和 Exceptions
silence_warnings
和enable_warnings
方法都可以在其代码块里改变$VERBOSE
的值,并在之后把值重置:
silence_warnings { Object.const_set "RAILS_DEFAULT_LOGGER", logger }
You can silence any stream while a block runs with silence_stream
:
在通过silence_stream
执行的代码块里,可以使任意流安静的运行:
silence_stream(STDOUT) do # 这里的代码不会输出到 STDOUT end
quietly
方法可以使 STDOUT 和 STDERR 保持安静,即便在子进程里也如此:
quietly { system 'bundle install' }
例如,railties 测试组件会用到上述方法,来阻止普通消息与进度状态混到一起。
也可以用suppress
方法来使异常保持安静。方法接收任意数量的异常类。如果代码块的代码执行时报出异常,并且该异常kind_of?
满足任一参数,suppress
便会将异其捕获并安静的返回。否则会重新抛出该异常:
# If the user is locked the increment is lost, no big deal. suppress(ActiveRecord::StaleObjectError) do current_user.increment! :visits end
定义于 active_support/core_ext/kernel/reporting.rb
.
2.14 in?
判断式in?
用于测试一个对象是否被包含在另一个对象里。当传入的参数无法响应include?
时,会抛出ArgumentError
异常。
使用in?
的例子:
1.in?([1,2]) # => true "lo".in?("hello") # => true 25.in?(30..50) # => false 1.in?(1) # => ArgumentError
定义于 active_support/core_ext/object/inclusion.rb
.
3 对Module
的扩展
3.1 alias_method_chain
使用纯 Ruby 可以用方法环绕其他的方法,这种做法被称为环绕别名。
例如,我们假设在功能测试里你希望参数都是字符串,就如同真实的请求中那样,但是同时你也希望对于数字和其他类型的值能够很方便的赋值。为了做到这点,你可以把test/test_helper.rb
里的ActionController::TestCase#process
方法像下面这样环绕:
ActionController::TestCase.class_eval do # save a reference to the original process method alias_method :original_process, :process # now redefine process and delegate to original_process def process(action, params=nil, session=nil, flash=nil, http_method='GET') params = Hash[*params.map {|k, v| [k, v.to_s]}.flatten] original_process(action, params, session, flash, http_method) end end
get
、post
等最终会通过此方法执行。
这么做有一定风险,:original_process
有可能已经被占用了。为了避免方法名发生碰撞,通常会添加标签来表明这是个关于什么的别名:
ActionController::TestCase.class_eval do def process_with_stringified_params(...) params = Hash[*params.map {|k, v| [k, v.to_s]}.flatten] process_without_stringified_params(action, params, session, flash, http_method) end alias_method :process_without_stringified_params, :process alias_method :process, :process_with_stringified_params end
alias_method_chain
为上述技巧提供了一个便捷之法:
ActionController::TestCase.class_eval do def process_with_stringified_params(...) params = Hash[*params.map {|k, v| [k, v.to_s]}.flatten] process_without_stringified_params(action, params, session, flash, http_method) end alias_method_chain :process, :stringified_params end
Rails 源代码中随处可见alias_method_chain
。例如ActiveRecord::Base#save
里,就通过这种方式对方法进行环绕,从 validations 下一个专门的模块里为其增加了验证。
定义于 active_support/core_ext/module/aliasing.rb
.
3.2 属性
3.2.1 alias_attribute
模型属性包含读取器、写入器和判断式。只需添加一行代码,就可以为模型属性添加一个包含以上三个方法的别名。与其他别名方法一样,新名称充当第一个参数,原有名称是第二个参数(为了方便记忆,可以类比下赋值时的书写顺序)。
class User < ActiveRecord::Base # You can refer to the email column as "login". # This can be meaningful for authentication code. alias_attribute :login, :email end
定义于 active_support/core_ext/module/aliasing.rb
.
3.2.2 内部属性
当你在一个被继承的类里定义一条属性时,属性名称有可能会发生碰撞。这一点对许多库而言尤为重要。
Active Support 定义了attr_internal_reader
、attr_internal_writer
和attr_internal_accessor
这些类宏。它们的作用与 Ruby 内建的attr_*
相当,只不过实例变量名多了下划线以避免碰撞。
类宏attr_internal
与attr_internal_accessor
是同义:
# library class ThirdPartyLibrary::Crawler attr_internal :log_level end # client code class MyCrawler < ThirdPartyLibrary::Crawler attr_accessor :log_level end
上述例子里的情况可能是,:log_level
并不属于库的公共接口,而是只用于开发。而在客户代码里,由于不知道可能出现的冲突,便在子类里又定义了:log_level
。多亏了attr_internal
才没有出项碰撞。
默认情况下,内部实例变量名以下划线开头,如上例中即为@_log_level
。不过这点可以通过Module.attr_internal_naming_format
进行配置,你可以传入任何sprintf
这一类的格式化字符串,并在开头加上@
,同时还要加上%s
表示变量名称的位置。默认值为"@_%s"
。
Rails 在若干地方使用了内部属性,比如在视图层:
module ActionView class Base attr_internal :captures attr_internal :request, :layout attr_internal :controller, :template end end
定义于 active_support/core_ext/module/attr_internal.rb
.
3.2.3 Module Attributes
类宏mattr_reader
、mattr_writer
和mattr_accessor
与为类定义的cattr_*
是相同的。实际上,cattr_*
系列的类宏只不过是mattr_*
这些类宏的别名。详见Class Attributes。
例如,依赖性机制就用到了它们:
module ActiveSupport module Dependencies mattr_accessor :warnings_on_first_load mattr_accessor :history mattr_accessor :loaded mattr_accessor :mechanism mattr_accessor :load_paths mattr_accessor :load_once_paths mattr_accessor :autoloaded_constants mattr_accessor :explicitly_unloadable_constants mattr_accessor :logger mattr_accessor :log_activity mattr_accessor :constant_watch_stack mattr_accessor :constant_watch_stack_mutex end end
定义于 active_support/core_ext/module/attribute_accessors.rb
.
3.3 Parents
3.3.1 parent
对一个嵌套的模块调用parent
方法,会返回其相应的常量:
module X module Y module Z end end end M = X::Y::Z X::Y::Z.parent # => X::Y M.parent # => X::Y
如果这个模块是匿名的或者属于顶级作用域, parent
会返回Object
。
若有上述情况,则parent_name
会返回nil
。
定义于 active_support/core_ext/module/introspection.rb
.
3.3.2 parent_name
对一个嵌套的模块调用parent_name
方法,会返回其相应常量的完全限定名:
module X module Y module Z end end end M = X::Y::Z X::Y::Z.parent_name # => "X::Y" M.parent_name # => "X::Y"
定义在顶级作用域里的模块或匿名的模块,parent_name
会返回nil
。
若有上述情况,则parent
返回Object
。
定义于 active_support/core_ext/module/introspection.rb
.
3.3.3 parents
parents
方法会对接收者调用parent
,并向上追溯直至Object
。之后所得结果链按由低到高顺序组成一个数组被返回。
module X module Y module Z end end end M = X::Y::Z X::Y::Z.parents # => [X::Y, X, Object] M.parents # => [X::Y, X, Object]
定义于 active_support/core_ext/module/introspection.rb
.
3.4 常量
defined in the receiver module:
local_constants
方法返回在接收者模块中定义的常量。
module X X1 = 1 X2 = 2 module Y Y1 = :y1 X1 = :overrides_X1_above end end X.local_constants # => [:X1, :X2, :Y] X::Y.local_constants # => [:Y1, :X1]
常量名会作为符号被返回。
定义于 active_support/core_ext/module/introspection.rb
.
3.4.1 限定常量名
标准方法const_defined?
、const_get
和const_set
接受裸常量名。
Active Support 扩展了这些API使其可以接受相对限定常量名。
新的方法名是qualified_const_defined?
,qualified_const_get
和qualified_const_set
。
它们的参数被假定为相对于其接收者的限定常量名:
Object.qualified_const_defined?("Math::PI") # => true Object.qualified_const_get("Math::PI") # => 3.141592653589793 Object.qualified_const_set("Math::Phi", 1.618034) # => 1.618034
参数可以使用裸常量名:
Math.qualified_const_get("E") # => 2.718281828459045
These methods are analogous to their built-in counterparts. In particular,
qualified_constant_defined?
accepts an optional second argument to be
able to say whether you want the predicate to look in the ancestors.
This flag is taken into account for each constant in the expression while
walking down the path.
这些方法与其内建的对应方法很类似。尤为值得一提的是,qualified_constant_defined?
接收一个可选的第二参数,以此来标明你是否要在祖先链中进行查找。
例如,假定:
module M X = 1 end module N class C include M end end
qualified_const_defined?
会这样执行:
N.qualified_const_defined?("C::X", false) # => false N.qualified_const_defined?("C::X", true) # => true N.qualified_const_defined?("C::X") # => true
As the last example implies, the second argument defaults to true,
as in const_defined?
.
For coherence with the built-in methods only relative paths are accepted.
Absolute qualified constant names like ::Math::PI
raise NameError
.
定义于 active_support/core_ext/module/qualified_const.rb
.
3.5 Reachable
A named module is reachable if it is stored in its corresponding constant. It means you can reach the module object via the constant.
That is what ordinarily happens, if a module is called "M", the M
constant exists and holds it:
module M end M.reachable? # => true
But since constants and modules are indeed kind of decoupled, module objects can become unreachable:
module M end orphan = Object.send(:remove_const, :M) # The module object is orphan now but it still has a name. orphan.name # => "M" # You cannot reach it via the constant M because it does not even exist. orphan.reachable? # => false # Let's define a module called "M" again. module M end # The constant M exists now again, and it stores a module # object called "M", but it is a new instance. orphan.reachable? # => false
定义于 active_support/core_ext/module/reachable.rb
.
3.6 Anonymous
A module may or may not have a name:
module M end M.name # => "M" N = Module.new N.name # => "N" Module.new.name # => nil
You can check whether a module has a name with the predicate anonymous?
:
module M end M.anonymous? # => false Module.new.anonymous? # => true
Note that being unreachable does not imply being anonymous:
module M end m = Object.send(:remove_const, :M) m.reachable? # => false m.anonymous? # => false
though an anonymous module is unreachable by definition.
定义于 active_support/core_ext/module/anonymous.rb
.
3.7 Method Delegation
The macro delegate
offers an easy way to forward methods.
Let's imagine that users in some application have login information in the User
model but name and other data in a separate Profile
model:
class User < ActiveRecord::Base has_one :profile end
With that configuration you get a user's name via their profile, user.profile.name
, but it could be handy to still be able to access such attribute directly:
class User < ActiveRecord::Base has_one :profile def name profile.name end end
That is what delegate
does for you:
class User < ActiveRecord::Base has_one :profile delegate :name, to: :profile end
It is shorter, and the intention more obvious.
The method must be public in the target.
The delegate
macro accepts several methods:
delegate :name, :age, :address, :twitter, to: :profile
When interpolated into a string, the :to
option should become an expression that evaluates to the object the method is delegated to. Typically a string or symbol. Such an expression is evaluated in the context of the receiver:
# delegates to the Rails constant delegate :logger, to: :Rails # delegates to the receiver's class delegate :table_name, to: :class
If the :prefix
option is true
this is less generic, see below.
By default, if the delegation raises NoMethodError
and the target is nil
the exception is propagated. You can ask that nil
is returned instead with the :allow_nil
option:
delegate :name, to: :profile, allow_nil: true
With :allow_nil
the call user.name
returns nil
if the user has no profile.
The option :prefix
adds a prefix to the name of the generated method. This may be handy for example to get a better name:
delegate :street, to: :address, prefix: true
The previous example generates address_street
rather than street
.
Since in this case the name of the generated method is composed of the target object and target method names, the :to
option must be a method name.
A custom prefix may also be configured:
delegate :size, to: :attachment, prefix: :avatar
In the previous example the macro generates avatar_size
rather than size
.
定义于 active_support/core_ext/module/delegation.rb
3.8 Redefining Methods
There are cases where you need to define a method with define_method
, but don't know whether a method with that name already exists. If it does, a warning is issued if they are enabled. No big deal, but not clean either.
The method redefine_method
prevents such a potential warning, removing the existing method before if needed.
定义于 active_support/core_ext/module/remove_method.rb
4 Extensions to Class
4.1 Class Attributes
4.1.1 class_attribute
The method class_attribute
declares one or more inheritable class attributes that can be overridden at any level down the hierarchy.
class A class_attribute :x end class B < A; end class C < B; end A.x = :a B.x # => :a C.x # => :a B.x = :b A.x # => :a C.x # => :b C.x = :c A.x # => :a B.x # => :b
For example ActionMailer::Base
defines:
class_attribute :default_params self.default_params = { mime_version: "1.0", charset: "UTF-8", content_type: "text/plain", parts_order: [ "text/plain", "text/enriched", "text/html" ] }.freeze
They can be also accessed and overridden at the instance level.
A.x = 1 a1 = A.new a2 = A.new a2.x = 2 a1.x # => 1, comes from A a2.x # => 2, overridden in a2
The generation of the writer instance method can be prevented by setting the option :instance_writer
to false
.
module ActiveRecord class Base class_attribute :table_name_prefix, instance_writer: false self.table_name_prefix = "" end end
A model may find that option useful as a way to prevent mass-assignment from setting the attribute.
The generation of the reader instance method can be prevented by setting the option :instance_reader
to false
.
class A class_attribute :x, instance_reader: false end A.new.x = 1 # NoMethodError
For convenience class_attribute
also defines an instance predicate which is the double negation of what the instance reader returns. In the examples above it would be called x?
.
When :instance_reader
is false
, the instance predicate returns a NoMethodError
just like the reader method.
If you do not want the instance predicate, pass instance_predicate: false
and it will not be defined.
定义于 active_support/core_ext/class/attribute.rb
4.1.2 cattr_reader
, cattr_writer
, and cattr_accessor
The macros cattr_reader
, cattr_writer
, and cattr_accessor
are analogous to their attr_*
counterparts but for classes. They initialize a class variable to nil
unless it already exists, and generate the corresponding class methods to access it:
class MysqlAdapter < AbstractAdapter # Generates class methods to access @@emulate_booleans. cattr_accessor :emulate_booleans self.emulate_booleans = true end
Instance methods are created as well for convenience, they are just proxies to the class attribute. So, instances can change the class attribute, but cannot override it as it happens with class_attribute
(see above). For example given
module ActionView class Base cattr_accessor :field_error_proc @@field_error_proc = Proc.new{ ... } end end
we can access field_error_proc
in views.
Also, you can pass a block to cattr_*
to set up the attribute with a default value:
class MysqlAdapter < AbstractAdapter # Generates class methods to access @@emulate_booleans with default value of true. cattr_accessor(:emulate_booleans) { true } end
The generation of the reader instance method can be prevented by setting :instance_reader
to false
and the generation of the writer instance method can be prevented by setting :instance_writer
to false
. Generation of both methods can be prevented by setting :instance_accessor
to false
. In all cases, the value must be exactly false
and not any false value.
module A class B # No first_name instance reader is generated. cattr_accessor :first_name, instance_reader: false # No last_name= instance writer is generated. cattr_accessor :last_name, instance_writer: false # No surname instance reader or surname= writer is generated. cattr_accessor :surname, instance_accessor: false end end
A model may find it useful to set :instance_accessor
to false
as a way to prevent mass-assignment from setting the attribute.
定义于 active_support/core_ext/module/attribute_accessors.rb
.
4.2 Subclasses & Descendants
4.2.1 subclasses
The subclasses
method returns the subclasses of the receiver:
class C; end C.subclasses # => [] class B < C; end C.subclasses # => [B] class A < B; end C.subclasses # => [B] class D < C; end C.subclasses # => [B, D]
The order in which these classes are returned is unspecified.
定义于 active_support/core_ext/class/subclasses.rb
.
4.2.2 descendants
The descendants
method returns all classes that are <
than its receiver:
class C; end C.descendants # => [] class B < C; end C.descendants # => [B] class A < B; end C.descendants # => [B, A] class D < C; end C.descendants # => [B, A, D]
The order in which these classes are returned is unspecified.
定义于 active_support/core_ext/class/subclasses.rb
.
5 Extensions to String
5.1 Output Safety
5.1.1 Motivation
Inserting data into HTML templates needs extra care. For example, you can't just interpolate @review.title
verbatim into an HTML page. For one thing, if the review title is "Flanagan & Matz rules!" the output won't be well-formed because an ampersand has to be escaped as "&". What's more, depending on the application, that may be a big security hole because users can inject malicious HTML setting a hand-crafted review title. Check out the section about cross-site scripting in the Security guide for further information about the risks.
5.1.2 Safe Strings
Active Support has the concept of (html) safe strings. A safe string is one that is marked as being insertable into HTML as is. It is trusted, no matter whether it has been escaped or not.
Strings are considered to be unsafe by default:
"".html_safe? # => false
You can obtain a safe string from a given one with the html_safe
method:
s = "".html_safe s.html_safe? # => true
It is important to understand that html_safe
performs no escaping whatsoever, it is just an assertion:
s = "<script>...</script>".html_safe s.html_safe? # => true s # => "<script>...</script>"
It is your responsibility to ensure calling html_safe
on a particular string is fine.
If you append onto a safe string, either in-place with concat
/<<
, or with +
, the result is a safe string. Unsafe arguments are escaped:
"".html_safe + "<" # => "<"
Safe arguments are directly appended:
"".html_safe + "<".html_safe # => "<"
These methods should not be used in ordinary views. Unsafe values are automatically escaped:
<%= @review.title %> <%# fine, escaped if needed %>
To insert something verbatim use the raw
helper rather than calling html_safe
:
<%= raw @cms.current_template %> <%# inserts @cms.current_template as is %>
or, equivalently, use <%==
:
<%== @cms.current_template %> <%# inserts @cms.current_template as is %>
The raw
helper calls html_safe
for you:
def raw(stringish) stringish.to_s.html_safe end
定义于 active_support/core_ext/string/output_safety.rb
.
5.1.3 Transformation
As a rule of thumb, except perhaps for concatenation as explained above, any method that may change a string gives you an unsafe string. These are downcase
, gsub
, strip
, chomp
, underscore
, etc.
In the case of in-place transformations like gsub!
the receiver itself becomes unsafe.
The safety bit is lost always, no matter whether the transformation actually changed something.
5.1.4 Conversion and Coercion
Calling to_s
on a safe string returns a safe string, but coercion with to_str
returns an unsafe string.
5.1.5 Copying
Calling dup
or clone
on safe strings yields safe strings.
5.2 remove
The method remove
will remove all occurrences of the pattern:
"Hello World".remove(/Hello /) => "World"
There's also the destructive version String#remove!
.
定义于 active_support/core_ext/string/filters.rb
.
5.3 squish
The method squish
strips leading and trailing whitespace, and substitutes runs of whitespace with a single space each:
" \n foo\n\r \t bar \n".squish # => "foo bar"
There's also the destructive version String#squish!
.
Note that it handles both ASCII and Unicode whitespace like mongolian vowel separator (U+180E).
定义于 active_support/core_ext/string/filters.rb
.
5.4 truncate
The method truncate
returns a copy of its receiver truncated after a given length
:
"Oh dear! Oh dear! I shall be late!".truncate(20) # => "Oh dear! Oh dear!..."
Ellipsis can be customized with the :omission
option:
"Oh dear! Oh dear! I shall be late!".truncate(20, omission: '…') # => "Oh dear! Oh …"
Note in particular that truncation takes into account the length of the omission string.
Pass a :separator
to truncate the string at a natural break:
"Oh dear! Oh dear! I shall be late!".truncate(18) # => "Oh dear! Oh dea..." "Oh dear! Oh dear! I shall be late!".truncate(18, separator: ' ') # => "Oh dear! Oh..."
The option :separator
can be a regexp:
"Oh dear! Oh dear! I shall be late!".truncate(18, separator: /\s/) # => "Oh dear! Oh..."
In above examples "dear" gets cut first, but then :separator
prevents it.
定义于 active_support/core_ext/string/filters.rb
.
5.5 inquiry
The inquiry
method converts a string into a StringInquirer
object making equality checks prettier.
"production".inquiry.production? # => true "active".inquiry.inactive? # => false
5.6 starts_with?
and ends_with?
Active Support defines 3rd person aliases of String#start_with?
and String#end_with?
:
"foo".starts_with?("f") # => true "foo".ends_with?("o") # => true
定义于 active_support/core_ext/string/starts_ends_with.rb
.
5.7 strip_heredoc
The method strip_heredoc
strips indentation in heredocs.
For example in
if options[:usage] puts <<-USAGE.strip_heredoc This command does such and such. Supported options are: -h This message ... USAGE end
the user would see the usage message aligned against the left margin.
Technically, it looks for the least indented line in the whole string, and removes that amount of leading whitespace.
定义于 active_support/core_ext/string/strip.rb
.
5.8 indent
Indents the lines in the receiver:
<<EOS.indent(2) def some_method some_code end EOS # => def some_method some_code end
The second argument, indent_string
, specifies which indent string to use. The default is nil
, which tells the method to make an educated guess peeking at the first indented line, and fallback to a space if there is none.
" foo".indent(2) # => " foo" "foo\n\t\tbar".indent(2) # => "\t\tfoo\n\t\t\t\tbar" "foo".indent(2, "\t") # => "\t\tfoo"
While indent_string
is typically one space or tab, it may be any string.
The third argument, indent_empty_lines
, is a flag that says whether empty lines should be indented. Default is false.
"foo\n\nbar".indent(2) # => " foo\n\n bar" "foo\n\nbar".indent(2, nil, true) # => " foo\n \n bar"
The indent!
method performs indentation in-place.
定义于 active_support/core_ext/string/indent.rb
.
5.9 Access
5.9.1 at(position)
Returns the character of the string at position position
:
"hello".at(0) # => "h" "hello".at(4) # => "o" "hello".at(-1) # => "o" "hello".at(10) # => nil
定义于 active_support/core_ext/string/access.rb
.
5.9.2 from(position)
Returns the substring of the string starting at position position
:
"hello".from(0) # => "hello" "hello".from(2) # => "llo" "hello".from(-2) # => "lo" "hello".from(10) # => "" if < 1.9, nil in 1.9
定义于 active_support/core_ext/string/access.rb
.
5.9.3 to(position)
Returns the substring of the string up to position position
:
"hello".to(0) # => "h" "hello".to(2) # => "hel" "hello".to(-2) # => "hell" "hello".to(10) # => "hello"
定义于 active_support/core_ext/string/access.rb
.
5.9.4 first(limit = 1)
The call str.first(n)
is equivalent to str.to(n-1)
if n
> 0, and returns an empty string for n
== 0.
定义于 active_support/core_ext/string/access.rb
.
5.9.5 last(limit = 1)
The call str.last(n)
is equivalent to str.from(-n)
if n
> 0, and returns an empty string for n
== 0.
定义于 active_support/core_ext/string/access.rb
.
5.10 Inflections
5.10.1 pluralize
The method pluralize
returns the plural of its receiver:
"table".pluralize # => "tables" "ruby".pluralize # => "rubies" "equipment".pluralize # => "equipment"
As the previous example shows, Active Support knows some irregular plurals and uncountable nouns. Built-in rules can be extended in config/initializers/inflections.rb
. That file is generated by the rails
command and has instructions in comments.
pluralize
can also take an optional count
parameter. If count == 1
the singular form will be returned. For any other value of count
the plural form will be returned:
"dude".pluralize(0) # => "dudes" "dude".pluralize(1) # => "dude" "dude".pluralize(2) # => "dudes"
Active Record uses this method to compute the default table name that corresponds to a model:
# active_record/model_schema.rb def undecorated_table_name(class_name = base_class.name) table_name = class_name.to_s.demodulize.underscore pluralize_table_names ? table_name.pluralize : table_name end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.2 singularize
The inverse of pluralize
:
"tables".singularize # => "table" "rubies".singularize # => "ruby" "equipment".singularize # => "equipment"
Associations compute the name of the corresponding default associated class using this method:
# active_record/reflection.rb def derive_class_name class_name = name.to_s.camelize class_name = class_name.singularize if collection? class_name end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.3 camelize
The method camelize
returns its receiver in camel case:
"product".camelize # => "Product" "admin_user".camelize # => "AdminUser"
As a rule of thumb you can think of this method as the one that transforms paths into Ruby class or module names, where slashes separate namespaces:
"backoffice/session".camelize # => "Backoffice::Session"
For example, Action Pack uses this method to load the class that provides a certain session store:
# action_controller/metal/session_management.rb def session_store=(store) @@session_store = store.is_a?(Symbol) ? ActionDispatch::Session.const_get(store.to_s.camelize) : store end
camelize
accepts an optional argument, it can be :upper
(default), or :lower
. With the latter the first letter becomes lowercase:
"visual_effect".camelize(:lower) # => "visualEffect"
That may be handy to compute method names in a language that follows that convention, for example JavaScript.
As a rule of thumb you can think of camelize
as the inverse of underscore
, though there are cases where that does not hold: "SSLError".underscore.camelize
gives back "SslError"
. To support cases such as this, Active Support allows you to specify acronyms in config/initializers/inflections.rb
:
ActiveSupport::Inflector.inflections do |inflect| inflect.acronym 'SSL' end "SSLError".underscore.camelize # => "SSLError"
camelize
is aliased to camelcase
.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.4 underscore
The method underscore
goes the other way around, from camel case to paths:
"Product".underscore # => "product" "AdminUser".underscore # => "admin_user"
Also converts "::" back to "/":
"Backoffice::Session".underscore # => "backoffice/session"
and understands strings that start with lowercase:
"visualEffect".underscore # => "visual_effect"
underscore
accepts no argument though.
Rails class and module autoloading uses underscore
to infer the relative path without extension of a file that would define a given missing constant:
# active_support/dependencies.rb def load_missing_constant(from_mod, const_name) ... qualified_name = qualified_name_for from_mod, const_name path_suffix = qualified_name.underscore ... end
As a rule of thumb you can think of underscore
as the inverse of camelize
, though there are cases where that does not hold. For example, "SSLError".underscore.camelize
gives back "SslError"
.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.5 titleize
The method titleize
capitalizes the words in the receiver:
"alice in wonderland".titleize # => "Alice In Wonderland" "fermat's enigma".titleize # => "Fermat's Enigma"
titleize
is aliased to titlecase
.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.6 dasherize
The method dasherize
replaces the underscores in the receiver with dashes:
"name".dasherize # => "name" "contact_data".dasherize # => "contact-data"
The XML serializer of models uses this method to dasherize node names:
# active_model/serializers/xml.rb def reformat_name(name) name = name.camelize if camelize? dasherize? ? name.dasherize : name end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.7 demodulize
Given a string with a qualified constant name, demodulize
returns the very constant name, that is, the rightmost part of it:
"Product".demodulize # => "Product" "Backoffice::UsersController".demodulize # => "UsersController" "Admin::Hotel::ReservationUtils".demodulize # => "ReservationUtils" "::Inflections".demodulize # => "Inflections" "".demodulize # => ""
Active Record for example uses this method to compute the name of a counter cache column:
# active_record/reflection.rb def counter_cache_column if options[:counter_cache] == true "#{active_record.name.demodulize.underscore.pluralize}_count" elsif options[:counter_cache] options[:counter_cache] end end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.8 deconstantize
Given a string with a qualified constant reference expression, deconstantize
removes the rightmost segment, generally leaving the name of the constant's container:
"Product".deconstantize # => "" "Backoffice::UsersController".deconstantize # => "Backoffice" "Admin::Hotel::ReservationUtils".deconstantize # => "Admin::Hotel"
Active Support for example uses this method in Module#qualified_const_set
:
def qualified_const_set(path, value) QualifiedConstUtils.raise_if_absolute(path) const_name = path.demodulize mod_name = path.deconstantize mod = mod_name.empty? ? self : qualified_const_get(mod_name) mod.const_set(const_name, value) end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.9 parameterize
The method parameterize
normalizes its receiver in a way that can be used in pretty URLs.
"John Smith".parameterize # => "john-smith" "Kurt Gödel".parameterize # => "kurt-godel"
In fact, the result string is wrapped in an instance of ActiveSupport::Multibyte::Chars
.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.10 tableize
The method tableize
is underscore
followed by pluralize
.
"Person".tableize # => "people" "Invoice".tableize # => "invoices" "InvoiceLine".tableize # => "invoice_lines"
As a rule of thumb, tableize
returns the table name that corresponds to a given model for simple cases. The actual implementation in Active Record is not straight tableize
indeed, because it also demodulizes the class name and checks a few options that may affect the returned string.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.11 classify
The method classify
is the inverse of tableize
. It gives you the class name corresponding to a table name:
"people".classify # => "Person" "invoices".classify # => "Invoice" "invoice_lines".classify # => "InvoiceLine"
The method understands qualified table names:
"highrise_production.companies".classify # => "Company"
Note that classify
returns a class name as a string. You can get the actual class object invoking constantize
on it, explained next.
定义于 active_support/core_ext/string/inflections.rb
.
5.10.12 constantize
The method constantize
resolves the constant reference expression in its receiver:
"Fixnum".constantize # => Fixnum module M X = 1 end "M::X".constantize # => 1
If the string evaluates to no known constant, or its content is not even a valid constant name, constantize
raises NameError
.
Constant name resolution by constantize
starts always at the top-level Object
even if there is no leading "::".
X = :in_Object module M X = :in_M X # => :in_M "::X".constantize # => :in_Object "X".constantize # => :in_Object (!) end
So, it is in general not equivalent to what Ruby would do in the same spot, had a real constant be evaluated.
Mailer test cases obtain the mailer being tested from the name of the test class using constantize
:
# action_mailer/test_case.rb def determine_default_mailer(name) name.sub(/Test$/, '').constantize rescue NameError => e raise NonInferrableMailerError.new(name) end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.13 humanize
The method humanize
tweaks an attribute name for display to end users.
Specifically performs these transformations:
- Applies human inflection rules to the argument.
- Deletes leading underscores, if any.
- Removes a "_id" suffix if present.
- Replaces underscores with spaces, if any.
- Downcases all words except acronyms.
- Capitalizes the first word.
The capitalization of the first word can be turned off by setting the +:capitalize+ option to false (default is true).
"name".humanize # => "Name" "author_id".humanize # => "Author" "author_id".humanize(capitalize: false) # => "author" "comments_count".humanize # => "Comments count" "_id".humanize # => "Id"
If "SSL" was defined to be an acronym:
'ssl_error'.humanize # => "SSL error"
The helper method full_messages
uses humanize
as a fallback to include
attribute names:
def full_messages full_messages = [] each do |attribute, messages| ... attr_name = attribute.to_s.gsub('.', '_').humanize attr_name = @base.class.human_attribute_name(attribute, default: attr_name) ... end full_messages end
定义于 active_support/core_ext/string/inflections.rb
.
5.10.14 foreign_key
The method foreign_key
gives a foreign key column name from a class name. To do so it demodulizes, underscores, and adds "_id":
"User".foreign_key # => "user_id" "InvoiceLine".foreign_key # => "invoice_line_id" "Admin::Session".foreign_key # => "session_id"
Pass a false argument if you do not want the underscore in "_id":
"User".foreign_key(false) # => "userid"
Associations use this method to infer foreign keys, for example has_one
and has_many
do this:
# active_record/associations.rb foreign_key = options[:foreign_key] || reflection.active_record.name.foreign_key
定义于 active_support/core_ext/string/inflections.rb
.
5.11 Conversions
5.11.1 to_date
, to_time
, to_datetime
The methods to_date
, to_time
, and to_datetime
are basically convenience wrappers around Date._parse
:
"2010-07-27".to_date # => Tue, 27 Jul 2010 "2010-07-27 23:37:00".to_time # => Tue Jul 27 23:37:00 UTC 2010 "2010-07-27 23:37:00".to_datetime # => Tue, 27 Jul 2010 23:37:00 +0000
to_time
receives an optional argument :utc
or :local
, to indicate which time zone you want the time in:
"2010-07-27 23:42:00".to_time(:utc) # => Tue Jul 27 23:42:00 UTC 2010 "2010-07-27 23:42:00".to_time(:local) # => Tue Jul 27 23:42:00 +0200 2010
Default is :utc
.
Please refer to the documentation of Date._parse
for further details.
The three of them return nil
for blank receivers.
定义于 active_support/core_ext/string/conversions.rb
.
6 Extensions to Numeric
6.1 Bytes
All numbers respond to these methods:
bytes kilobytes megabytes gigabytes terabytes petabytes exabytes
They return the corresponding amount of bytes, using a conversion factor of 1024:
2.kilobytes # => 2048 3.megabytes # => 3145728 3.5.gigabytes # => 3758096384 -4.exabytes # => -4611686018427387904
Singular forms are aliased so you are able to say:
1.megabyte # => 1048576
定义于 active_support/core_ext/numeric/bytes.rb
.
6.2 Time
Enables the use of time calculations and declarations, like 45.minutes + 2.hours + 4.years
.
These methods use Time#advance for precise date calculations when using from_now, ago, etc. as well as adding or subtracting their results from a Time object. For example:
# equivalent to Time.current.advance(months: 1) 1.month.from_now # equivalent to Time.current.advance(years: 2) 2.years.from_now # equivalent to Time.current.advance(months: 4, years: 5) (4.months + 5.years).from_now
While these methods provide precise calculation when used as in the examples above, care
should be taken to note that this is not true if the result of months',
years', etc is
converted before use:
# equivalent to 30.days.to_i.from_now 1.month.to_i.from_now # equivalent to 365.25.days.to_f.from_now 1.year.to_f.from_now
In such cases, Ruby's core Date and Time should be used for precision date and time arithmetic.
定义于 active_support/core_ext/numeric/time.rb
.
6.3 Formatting
Enables the formatting of numbers in a variety of ways.
Produce a string representation of a number as a telephone number:
5551234.to_s(:phone) # => 555-1234 1235551234.to_s(:phone) # => 123-555-1234 1235551234.to_s(:phone, area_code: true) # => (123) 555-1234 1235551234.to_s(:phone, delimiter: " ") # => 123 555 1234 1235551234.to_s(:phone, area_code: true, extension: 555) # => (123) 555-1234 x 555 1235551234.to_s(:phone, country_code: 1) # => +1-123-555-1234
Produce a string representation of a number as currency:
1234567890.50.to_s(:currency) # => $1,234,567,890.50 1234567890.506.to_s(:currency) # => $1,234,567,890.51 1234567890.506.to_s(:currency, precision: 3) # => $1,234,567,890.506
Produce a string representation of a number as a percentage:
100.to_s(:percentage) # => 100.000% 100.to_s(:percentage, precision: 0) # => 100% 1000.to_s(:percentage, delimiter: '.', separator: ',') # => 1.000,000% 302.24398923423.to_s(:percentage, precision: 5) # => 302.24399%
Produce a string representation of a number in delimited form:
12345678.to_s(:delimited) # => 12,345,678 12345678.05.to_s(:delimited) # => 12,345,678.05 12345678.to_s(:delimited, delimiter: ".") # => 12.345.678 12345678.to_s(:delimited, delimiter: ",") # => 12,345,678 12345678.05.to_s(:delimited, separator: " ") # => 12,345,678 05
Produce a string representation of a number rounded to a precision:
111.2345.to_s(:rounded) # => 111.235 111.2345.to_s(:rounded, precision: 2) # => 111.23 13.to_s(:rounded, precision: 5) # => 13.00000 389.32314.to_s(:rounded, precision: 0) # => 389 111.2345.to_s(:rounded, significant: true) # => 111
Produce a string representation of a number as a human-readable number of bytes:
123.to_s(:human_size) # => 123 Bytes 1234.to_s(:human_size) # => 1.21 KB 12345.to_s(:human_size) # => 12.1 KB 1234567.to_s(:human_size) # => 1.18 MB 1234567890.to_s(:human_size) # => 1.15 GB 1234567890123.to_s(:human_size) # => 1.12 TB
Produce a string representation of a number in human-readable words:
123.to_s(:human) # => "123" 1234.to_s(:human) # => "1.23 Thousand" 12345.to_s(:human) # => "12.3 Thousand" 1234567.to_s(:human) # => "1.23 Million" 1234567890.to_s(:human) # => "1.23 Billion" 1234567890123.to_s(:human) # => "1.23 Trillion" 1234567890123456.to_s(:human) # => "1.23 Quadrillion"
定义于 active_support/core_ext/numeric/conversions.rb
.
7 Extensions to Integer
7.1 multiple_of?
The method multiple_of?
tests whether an integer is multiple of the argument:
2.multiple_of?(1) # => true 1.multiple_of?(2) # => false
定义于 active_support/core_ext/integer/multiple.rb
.
7.2 ordinal
The method ordinal
returns the ordinal suffix string corresponding to the receiver integer:
1.ordinal # => "st" 2.ordinal # => "nd" 53.ordinal # => "rd" 2009.ordinal # => "th" -21.ordinal # => "st" -134.ordinal # => "th"
定义于 active_support/core_ext/integer/inflections.rb
.
7.3 ordinalize
The method ordinalize
returns the ordinal string corresponding to the receiver integer. In comparison, note that the ordinal
method returns only the suffix string.
1.ordinalize # => "1st" 2.ordinalize # => "2nd" 53.ordinalize # => "53rd" 2009.ordinalize # => "2009th" -21.ordinalize # => "-21st" -134.ordinalize # => "-134th"
定义于 active_support/core_ext/integer/inflections.rb
.
8 Extensions to BigDecimal
8.1 to_s
The method to_s
is aliased to to_formatted_s
. This provides a convenient way to display a BigDecimal value in floating-point notation:
BigDecimal.new(5.00, 6).to_s # => "5.0"
8.2 to_formatted_s
Te method to_formatted_s
provides a default specifier of "F". This means that a simple call to to_formatted_s
or to_s
will result in floating point representation instead of engineering notation:
BigDecimal.new(5.00, 6).to_formatted_s # => "5.0"
and that symbol specifiers are also supported:
BigDecimal.new(5.00, 6).to_formatted_s(:db) # => "5.0"
Engineering notation is still supported:
BigDecimal.new(5.00, 6).to_formatted_s("e") # => "0.5E1"
9 Extensions to Enumerable
9.1 sum
The method sum
adds the elements of an enumerable:
[1, 2, 3].sum # => 6 (1..100).sum # => 5050
Addition only assumes the elements respond to +
:
[[1, 2], [2, 3], [3, 4]].sum # => [1, 2, 2, 3, 3, 4] %w(foo bar baz).sum # => "foobarbaz" {a: 1, b: 2, c: 3}.sum # => [:b, 2, :c, 3, :a, 1]
The sum of an empty collection is zero by default, but this is customizable:
[].sum # => 0 [].sum(1) # => 1
If a block is given, sum
becomes an iterator that yields the elements of the collection and sums the returned values:
(1..5).sum {|n| n * 2 } # => 30 [2, 4, 6, 8, 10].sum # => 30
The sum of an empty receiver can be customized in this form as well:
[].sum(1) {|n| n**3} # => 1
定义于 active_support/core_ext/enumerable.rb
.
9.2 index_by
The method index_by
generates a hash with the elements of an enumerable indexed by some key.
It iterates through the collection and passes each element to a block. The element will be keyed by the value returned by the block:
invoices.index_by(&:number) # => {'2009-032' => <Invoice ...>, '2009-008' => <Invoice ...>, ...}
Keys should normally be unique. If the block returns the same value for different elements no collection is built for that key. The last item will win.
定义于 active_support/core_ext/enumerable.rb
.
9.3 many?
The method many?
is shorthand for collection.size > 1
:
<% if pages.many? %> <%= pagination_links %> <% end %>
If an optional block is given, many?
only takes into account those elements that return true:
@see_more = videos.many? {|video| video.category == params[:category]}
定义于 active_support/core_ext/enumerable.rb
.
9.4 exclude?
The predicate exclude?
tests whether a given object does not belong to the collection. It is the negation of the built-in include?
:
to_visit << node if visited.exclude?(node)
定义于 active_support/core_ext/enumerable.rb
.
10 Extensions to Array
10.1 Accessing
Active Support augments the API of arrays to ease certain ways of accessing them. For example, to
returns the subarray of elements up to the one at the passed index:
%w(a b c d).to(2) # => %w(a b c) [].to(7) # => []
Similarly, from
returns the tail from the element at the passed index to the end. If the index is greater than the length of the array, it returns an empty array.
%w(a b c d).from(2) # => %w(c d) %w(a b c d).from(10) # => [] [].from(0) # => []
The methods second
, third
, fourth
, and fifth
return the corresponding element (first
is built-in). Thanks to social wisdom and positive constructiveness all around, forty_two
is also available.
%w(a b c d).third # => c %w(a b c d).fifth # => nil
定义于 active_support/core_ext/array/access.rb
.
10.2 Adding Elements
10.2.1 prepend
This method is an alias of Array#unshift
.
%w(a b c d).prepend('e') # => %w(e a b c d) [].prepend(10) # => [10]
定义于 active_support/core_ext/array/prepend_and_append.rb
.
10.2.2 append
This method is an alias of Array#<<
.
%w(a b c d).append('e') # => %w(a b c d e) [].append([1,2]) # => [[1,2]]
定义于 active_support/core_ext/array/prepend_and_append.rb
.
10.3 Options Extraction
When the last argument in a method call is a hash, except perhaps for a &block
argument, Ruby allows you to omit the brackets:
User.exists?(email: params[:email])
That syntactic sugar is used a lot in Rails to avoid positional arguments where there would be too many, offering instead interfaces that emulate named parameters. In particular it is very idiomatic to use a trailing hash for options.
If a method expects a variable number of arguments and uses *
in its declaration, however, such an options hash ends up being an item of the array of arguments, where it loses its role.
In those cases, you may give an options hash a distinguished treatment with extract_options!
. This method checks the type of the last item of an array. If it is a hash it pops it and returns it, otherwise it returns an empty hash.
Let's see for example the definition of the caches_action
controller macro:
def caches_action(*actions) return unless cache_configured? options = actions.extract_options! ... end
This method receives an arbitrary number of action names, and an optional hash of options as last argument. With the call to extract_options!
you obtain the options hash and remove it from actions
in a simple and explicit way.
定义于 active_support/core_ext/array/extract_options.rb
.
10.4 Conversions
10.4.1 to_sentence
The method to_sentence
turns an array into a string containing a sentence that enumerates its items:
%w().to_sentence # => "" %w(Earth).to_sentence # => "Earth" %w(Earth Wind).to_sentence # => "Earth and Wind" %w(Earth Wind Fire).to_sentence # => "Earth, Wind, and Fire"
This method accepts three options:
-
:two_words_connector
: What is used for arrays of length 2. Default is " and ". -
:words_connector
: What is used to join the elements of arrays with 3 or more elements, except for the last two. Default is ", ". -
:last_word_connector
: What is used to join the last items of an array with 3 or more elements. Default is ", and ".
The defaults for these options can be localized, their keys are:
Option | I18n key |
---|---|
:two_words_connector |
support.array.two_words_connector |
:words_connector |
support.array.words_connector |
:last_word_connector |
support.array.last_word_connector |
定义于 active_support/core_ext/array/conversions.rb
.
10.4.2 to_formatted_s
The method to_formatted_s
acts like to_s
by default.
If the array contains items that respond to id
, however, the symbol
:db
may be passed as argument. That's typically used with
collections of Active Record objects. Returned strings are:
[].to_formatted_s(:db) # => "null" [user].to_formatted_s(:db) # => "8456" invoice.lines.to_formatted_s(:db) # => "23,567,556,12"
Integers in the example above are supposed to come from the respective calls to id
.
定义于 active_support/core_ext/array/conversions.rb
.
10.4.3 to_xml
The method to_xml
returns a string containing an XML representation of its receiver:
Contributor.limit(2).order(:rank).to_xml # => # <?xml version="1.0" encoding="UTF-8"?> # <contributors type="array"> # <contributor> # <id type="integer">4356</id> # <name>Jeremy Kemper</name> # <rank type="integer">1</rank> # <url-id>jeremy-kemper</url-id> # </contributor> # <contributor> # <id type="integer">4404</id> # <name>David Heinemeier Hansson</name> # <rank type="integer">2</rank> # <url-id>david-heinemeier-hansson</url-id> # </contributor> # </contributors>
To do so it sends to_xml
to every item in turn, and collects the results under a root node. All items must respond to to_xml
, an exception is raised otherwise.
By default, the name of the root element is the underscorized and dasherized plural of the name of the class of the first item, provided the rest of elements belong to that type (checked with is_a?
) and they are not hashes. In the example above that's "contributors".
If there's any element that does not belong to the type of the first one the root node becomes "objects":
[Contributor.first, Commit.first].to_xml # => # <?xml version="1.0" encoding="UTF-8"?> # <objects type="array"> # <object> # <id type="integer">4583</id> # <name>Aaron Batalion</name> # <rank type="integer">53</rank> # <url-id>aaron-batalion</url-id> # </object> # <object> # <author>Joshua Peek</author> # <authored-timestamp type="datetime">2009-09-02T16:44:36Z</authored-timestamp> # <branch>origin/master</branch> # <committed-timestamp type="datetime">2009-09-02T16:44:36Z</committed-timestamp> # <committer>Joshua Peek</committer> # <git-show nil="true"></git-show> # <id type="integer">190316</id> # <imported-from-svn type="boolean">false</imported-from-svn> # <message>Kill AMo observing wrap_with_notifications since ARes was only using it</message> # <sha1>723a47bfb3708f968821bc969a9a3fc873a3ed58</sha1> # </object> # </objects>
If the receiver is an array of hashes the root element is by default also "objects":
[{a: 1, b: 2}, {c: 3}].to_xml # => # <?xml version="1.0" encoding="UTF-8"?> # <objects type="array"> # <object> # <b type="integer">2</b> # <a type="integer">1</a> # </object> # <object> # <c type="integer">3</c> # </object> # </objects>
If the collection is empty the root element is by default "nil-classes". That's a gotcha, for example the root element of the list of contributors above would not be "contributors" if the collection was empty, but "nil-classes". You may use the :root
option to ensure a consistent root element.
The name of children nodes is by default the name of the root node singularized. In the examples above we've seen "contributor" and "object". The option :children
allows you to set these node names.
The default XML builder is a fresh instance of Builder::XmlMarkup
. You can configure your own builder via the :builder
option. The method also accepts options like :dasherize
and friends, they are forwarded to the builder:
Contributor.limit(2).order(:rank).to_xml(skip_types: true) # => # <?xml version="1.0" encoding="UTF-8"?> # <contributors> # <contributor> # <id>4356</id> # <name>Jeremy Kemper</name> # <rank>1</rank> # <url-id>jeremy-kemper</url-id> # </contributor> # <contributor> # <id>4404</id> # <name>David Heinemeier Hansson</name> # <rank>2</rank> # <url-id>david-heinemeier-hansson</url-id> # </contributor> # </contributors>
定义于 active_support/core_ext/array/conversions.rb
.
10.5 Wrapping
The method Array.wrap
wraps its argument in an array unless it is already an array (or array-like).
Specifically:
- If the argument is
nil
an empty list is returned. - Otherwise, if the argument responds to
to_ary
it is invoked, and if the value ofto_ary
is notnil
, it is returned. - Otherwise, an array with the argument as its single element is returned.
Array.wrap(nil) # => [] Array.wrap([1, 2, 3]) # => [1, 2, 3] Array.wrap(0) # => [0]
This method is similar in purpose to Kernel#Array
, but there are some differences:
- If the argument responds to
to_ary
the method is invoked.Kernel#Array
moves on to tryto_a
if the returned value isnil
, butArray.wrap
returnsnil
right away. - If the returned value from
to_ary
is neithernil
nor anArray
object,Kernel#Array
raises an exception, whileArray.wrap
does not, it just returns the value. - It does not call
to_a
on the argument, though special-casesnil
to return an empty array.
The last point is particularly worth comparing for some enumerables:
Array.wrap(foo: :bar) # => [{:foo=>:bar}] Array(foo: :bar) # => [[:foo, :bar]]
There's also a related idiom that uses the splat operator:
[*object]
which in Ruby 1.8 returns [nil]
for nil
, and calls to Array(object)
otherwise. (Please if you know the exact behavior in 1.9 contact fxn.)
Thus, in this case the behavior is different for nil
, and the differences with Kernel#Array
explained above apply to the rest of object
s.
定义于 active_support/core_ext/array/wrap.rb
.
10.6 Duplicating
The method Array.deep_dup
duplicates itself and all objects inside
recursively with Active Support method Object#deep_dup
. It works like Array#map
with sending deep_dup
method to each object inside.
array = [1, [2, 3]] dup = array.deep_dup dup[1][2] = 4 array[1][2] == nil # => true
定义于 active_support/core_ext/object/deep_dup.rb
.
10.7 Grouping
10.7.1 in_groups_of(number, fill_with = nil)
The method in_groups_of
splits an array into consecutive groups of a certain size. It returns an array with the groups:
[1, 2, 3].in_groups_of(2) # => [[1, 2], [3, nil]]
or yields them in turn if a block is passed:
<% sample.in_groups_of(3) do |a, b, c| %> <tr> <td><%= a %></td> <td><%= b %></td> <td><%= c %></td> </tr> <% end %>
The first example shows in_groups_of
fills the last group with as many nil
elements as needed to have the requested size. You can change this padding value using the second optional argument:
[1, 2, 3].in_groups_of(2, 0) # => [[1, 2], [3, 0]]
And you can tell the method not to fill the last group passing false
:
[1, 2, 3].in_groups_of(2, false) # => [[1, 2], [3]]
As a consequence false
can't be a used as a padding value.
定义于 active_support/core_ext/array/grouping.rb
.
10.7.2 in_groups(number, fill_with = nil)
The method in_groups
splits an array into a certain number of groups. The method returns an array with the groups:
%w(1 2 3 4 5 6 7).in_groups(3) # => [["1", "2", "3"], ["4", "5", nil], ["6", "7", nil]]
or yields them in turn if a block is passed:
%w(1 2 3 4 5 6 7).in_groups(3) {|group| p group} ["1", "2", "3"] ["4", "5", nil] ["6", "7", nil]
The examples above show that in_groups
fills some groups with a trailing nil
element as needed. A group can get at most one of these extra elements, the rightmost one if any. And the groups that have them are always the last ones.
You can change this padding value using the second optional argument:
%w(1 2 3 4 5 6 7).in_groups(3, "0") # => [["1", "2", "3"], ["4", "5", "0"], ["6", "7", "0"]]
And you can tell the method not to fill the smaller groups passing false
:
%w(1 2 3 4 5 6 7).in_groups(3, false) # => [["1", "2", "3"], ["4", "5"], ["6", "7"]]
As a consequence false
can't be a used as a padding value.
定义于 active_support/core_ext/array/grouping.rb
.
10.7.3 split(value = nil)
The method split
divides an array by a separator and returns the resulting chunks.
If a block is passed the separators are those elements of the array for which the block returns true:
(-5..5).to_a.split { |i| i.multiple_of?(4) } # => [[-5], [-3, -2, -1], [1, 2, 3], [5]]
Otherwise, the value received as argument, which defaults to nil
, is the separator:
[0, 1, -5, 1, 1, "foo", "bar"].split(1) # => [[0], [-5], [], ["foo", "bar"]]
Observe in the previous example that consecutive separators result in empty arrays.
定义于 active_support/core_ext/array/grouping.rb
.
11 Extensions to Hash
11.1 Conversions
11.1.1 to_xml
The method to_xml
returns a string containing an XML representation of its receiver:
{"foo" => 1, "bar" => 2}.to_xml # => # <?xml version="1.0" encoding="UTF-8"?> # <hash> # <foo type="integer">1</foo> # <bar type="integer">2</bar> # </hash>
To do so, the method loops over the pairs and builds nodes that depend on the values. Given a pair key
, value
:
If
value
is a hash there's a recursive call withkey
as:root
.If
value
is an array there's a recursive call withkey
as:root
, andkey
singularized as:children
.If
value
is a callable object it must expect one or two arguments. Depending on the arity, the callable is invoked with theoptions
hash as first argument withkey
as:root
, andkey
singularized as second argument. Its return value becomes a new node.If
value
responds toto_xml
the method is invoked withkey
as:root
.Otherwise, a node with
key
as tag is created with a string representation ofvalue
as text node. Ifvalue
isnil
an attribute "nil" set to "true" is added. Unless the option:skip_types
exists and is true, an attribute "type" is added as well according to the following mapping:
XML_TYPE_NAMES = { "Symbol" => "symbol", "Fixnum" => "integer", "Bignum" => "integer", "BigDecimal" => "decimal", "Float" => "float", "TrueClass" => "boolean", "FalseClass" => "boolean", "Date" => "date", "DateTime" => "datetime", "Time" => "datetime" }
By default the root node is "hash", but that's configurable via the :root
option.
The default XML builder is a fresh instance of Builder::XmlMarkup
. You can configure your own builder with the :builder
option. The method also accepts options like :dasherize
and friends, they are forwarded to the builder.
定义于 active_support/core_ext/hash/conversions.rb
.
11.2 Merging
Ruby has a built-in method Hash#merge
that merges two hashes:
{a: 1, b: 1}.merge(a: 0, c: 2) # => {:a=>0, :b=>1, :c=>2}
Active Support defines a few more ways of merging hashes that may be convenient.
11.2.1 reverse_merge
and reverse_merge!
In case of collision the key in the hash of the argument wins in merge
. You can support option hashes with default values in a compact way with this idiom:
options = {length: 30, omission: "..."}.merge(options)
Active Support defines reverse_merge
in case you prefer this alternative notation:
options = options.reverse_merge(length: 30, omission: "...")
And a bang version reverse_merge!
that performs the merge in place:
options.reverse_merge!(length: 30, omission: "...")
Take into account that reverse_merge!
may change the hash in the caller, which may or may not be a good idea.
定义于 active_support/core_ext/hash/reverse_merge.rb
.
11.2.2 reverse_update
The method reverse_update
is an alias for reverse_merge!
, explained above.
Note that reverse_update
has no bang.
定义于 active_support/core_ext/hash/reverse_merge.rb
.
11.2.3 deep_merge
and deep_merge!
As you can see in the previous example if a key is found in both hashes the value in the one in the argument wins.
Active Support defines Hash#deep_merge
. In a deep merge, if a key is found in both hashes and their values are hashes in turn, then their merge becomes the value in the resulting hash:
{a: {b: 1}}.deep_merge(a: {c: 2}) # => {:a=>{:b=>1, :c=>2}}
The method deep_merge!
performs a deep merge in place.
定义于 active_support/core_ext/hash/deep_merge.rb
.
11.3 Deep duplicating
The method Hash.deep_dup
duplicates itself and all keys and values
inside recursively with Active Support method Object#deep_dup
. It works like Enumerator#each_with_object
with sending deep_dup
method to each pair inside.
hash = { a: 1, b: { c: 2, d: [3, 4] } } dup = hash.deep_dup dup[:b][:e] = 5 dup[:b][:d] << 5 hash[:b][:e] == nil # => true hash[:b][:d] == [3, 4] # => true
定义于 active_support/core_ext/object/deep_dup.rb
.
11.4 Working with Keys
11.4.1 except
and except!
The method except
returns a hash with the keys in the argument list removed, if present:
{a: 1, b: 2}.except(:a) # => {:b=>2}
If the receiver responds to convert_key
, the method is called on each of the arguments. This allows except
to play nice with hashes with indifferent access for instance:
{a: 1}.with_indifferent_access.except(:a) # => {} {a: 1}.with_indifferent_access.except("a") # => {}
There's also the bang variant except!
that removes keys in the very receiver.
定义于 active_support/core_ext/hash/except.rb
.
11.4.2 transform_keys
and transform_keys!
The method transform_keys
accepts a block and returns a hash that has applied the block operations to each of the keys in the receiver:
{nil => nil, 1 => 1, a: :a}.transform_keys { |key| key.to_s.upcase } # => {"" => nil, "A" => :a, "1" => 1}
In case of key collision, one of the values will be chosen. The chosen value may not always be the same given the same hash:
{"a" => 1, a: 2}.transform_keys { |key| key.to_s.upcase } # The result could either be # => {"A"=>2} # or # => {"A"=>1}
This method may be useful for example to build specialized conversions. For instance stringify_keys
and symbolize_keys
use transform_keys
to perform their key conversions:
def stringify_keys transform_keys { |key| key.to_s } end ... def symbolize_keys transform_keys { |key| key.to_sym rescue key } end
There's also the bang variant transform_keys!
that applies the block operations to keys in the very receiver.
Besides that, one can use deep_transform_keys
and deep_transform_keys!
to perform the block operation on all the keys in the given hash and all the hashes nested into it. An example of the result is:
{nil => nil, 1 => 1, nested: {a: 3, 5 => 5}}.deep_transform_keys { |key| key.to_s.upcase } # => {""=>nil, "1"=>1, "NESTED"=>{"A"=>3, "5"=>5}}
定义于 active_support/core_ext/hash/keys.rb
.
11.4.3 stringify_keys
and stringify_keys!
The method stringify_keys
returns a hash that has a stringified version of the keys in the receiver. It does so by sending to_s
to them:
{nil => nil, 1 => 1, a: :a}.stringify_keys # => {"" => nil, "a" => :a, "1" => 1}
In case of key collision, one of the values will be chosen. The chosen value may not always be the same given the same hash:
{"a" => 1, a: 2}.stringify_keys # The result could either be # => {"a"=>2} # or # => {"a"=>1}
This method may be useful for example to easily accept both symbols and strings as options. For instance ActionView::Helpers::FormHelper
defines:
def to_check_box_tag(options = {}, checked_value = "1", unchecked_value = "0") options = options.stringify_keys options["type"] = "checkbox" ... end
The second line can safely access the "type" key, and let the user to pass either :type
or "type".
There's also the bang variant stringify_keys!
that stringifies keys in the very receiver.
Besides that, one can use deep_stringify_keys
and deep_stringify_keys!
to stringify all the keys in the given hash and all the hashes nested into it. An example of the result is:
{nil => nil, 1 => 1, nested: {a: 3, 5 => 5}}.deep_stringify_keys # => {""=>nil, "1"=>1, "nested"=>{"a"=>3, "5"=>5}}
定义于 active_support/core_ext/hash/keys.rb
.
11.4.4 symbolize_keys
and symbolize_keys!
The method symbolize_keys
returns a hash that has a symbolized version of the keys in the receiver, where possible. It does so by sending to_sym
to them:
{nil => nil, 1 => 1, "a" => "a"}.symbolize_keys # => {1=>1, nil=>nil, :a=>"a"}
Note in the previous example only one key was symbolized.
In case of key collision, one of the values will be chosen. The chosen value may not always be the same given the same hash:
{"a" => 1, a: 2}.symbolize_keys # The result could either be # => {:a=>2} # or # => {:a=>1}
This method may be useful for example to easily accept both symbols and strings as options. For instance ActionController::UrlRewriter
defines
def rewrite_path(options) options = options.symbolize_keys options.update(options[:params].symbolize_keys) if options[:params] ... end
The second line can safely access the :params
key, and let the user to pass either :params
or "params".
There's also the bang variant symbolize_keys!
that symbolizes keys in the very receiver.
Besides that, one can use deep_symbolize_keys
and deep_symbolize_keys!
to symbolize all the keys in the given hash and all the hashes nested into it. An example of the result is:
{nil => nil, 1 => 1, "nested" => {"a" => 3, 5 => 5}}.deep_symbolize_keys # => {nil=>nil, 1=>1, nested:{a:3, 5=>5}}
定义于 active_support/core_ext/hash/keys.rb
.
11.4.5 to_options
and to_options!
The methods to_options
and to_options!
are respectively aliases of symbolize_keys
and symbolize_keys!
.
定义于 active_support/core_ext/hash/keys.rb
.
11.4.6 assert_valid_keys
The method assert_valid_keys
receives an arbitrary number of arguments, and checks whether the receiver has any key outside that white list. If it does ArgumentError
is raised.
{a: 1}.assert_valid_keys(:a) # passes {a: 1}.assert_valid_keys("a") # ArgumentError
Active Record does not accept unknown options when building associations, for example. It implements that control via assert_valid_keys
.
定义于 active_support/core_ext/hash/keys.rb
.
11.5 Slicing
Ruby has built-in support for taking slices out of strings and arrays. Active Support extends slicing to hashes:
{a: 1, b: 2, c: 3}.slice(:a, :c) # => {:c=>3, :a=>1} {a: 1, b: 2, c: 3}.slice(:b, :X) # => {:b=>2} # non-existing keys are ignored
If the receiver responds to convert_key
keys are normalized:
{a: 1, b: 2}.with_indifferent_access.slice("a") # => {:a=>1}
Slicing may come in handy for sanitizing option hashes with a white list of keys.
There's also slice!
which in addition to perform a slice in place returns what's removed:
hash = {a: 1, b: 2} rest = hash.slice!(:a) # => {:b=>2} hash # => {:a=>1}
定义于 active_support/core_ext/hash/slice.rb
.
11.6 Extracting
The method extract!
removes and returns the key/value pairs matching the given keys.
hash = {a: 1, b: 2} rest = hash.extract!(:a) # => {:a=>1} hash # => {:b=>2}
The method extract!
returns the same subclass of Hash, that the receiver is.
hash = {a: 1, b: 2}.with_indifferent_access rest = hash.extract!(:a).class # => ActiveSupport::HashWithIndifferentAccess
定义于 active_support/core_ext/hash/slice.rb
.
11.7 Indifferent Access
The method with_indifferent_access
returns an ActiveSupport::HashWithIndifferentAccess
out of its receiver:
{a: 1}.with_indifferent_access["a"] # => 1
定义于 active_support/core_ext/hash/indifferent_access.rb
.
11.8 Compacting
The methods compact
and compact!
return a Hash without items with nil
value.
{a: 1, b: 2, c: nil}.compact # => {a: 1, b: 2}
定义于 active_support/core_ext/hash/compact.rb
.
12 Extensions to Regexp
12.1 multiline?
The method multiline?
says whether a regexp has the /m
flag set, that is, whether the dot matches newlines.
%r{.}.multiline? # => false %r{.}m.multiline? # => true Regexp.new('.').multiline? # => false Regexp.new('.', Regexp::MULTILINE).multiline? # => true
Rails uses this method in a single place, also in the routing code. Multiline regexps are disallowed for route requirements and this flag eases enforcing that constraint.
def assign_route_options(segments, defaults, requirements) ... if requirement.multiline? raise ArgumentError, "Regexp multiline option not allowed in routing requirements: #{requirement.inspect}" end ... end
定义于 active_support/core_ext/regexp.rb
.
13 Extensions to Range
13.1 to_s
Active Support extends the method Range#to_s
so that it understands an optional format argument. As of this writing the only supported non-default format is :db
:
(Date.today..Date.tomorrow).to_s # => "2009-10-25..2009-10-26" (Date.today..Date.tomorrow).to_s(:db) # => "BETWEEN '2009-10-25' AND '2009-10-26'"
As the example depicts, the :db
format generates a BETWEEN
SQL clause. That is used by Active Record in its support for range values in conditions.
定义于 active_support/core_ext/range/conversions.rb
.
13.2 include?
The methods Range#include?
and Range#===
say whether some value falls between the ends of a given instance:
(2..3).include?(Math::E) # => true
Active Support extends these methods so that the argument may be another range in turn. In that case we test whether the ends of the argument range belong to the receiver themselves:
(1..10).include?(3..7) # => true (1..10).include?(0..7) # => false (1..10).include?(3..11) # => false (1...9).include?(3..9) # => false (1..10) === (3..7) # => true (1..10) === (0..7) # => false (1..10) === (3..11) # => false (1...9) === (3..9) # => false
定义于 active_support/core_ext/range/include_range.rb
.
13.3 overlaps?
The method Range#overlaps?
says whether any two given ranges have non-void intersection:
(1..10).overlaps?(7..11) # => true (1..10).overlaps?(0..7) # => true (1..10).overlaps?(11..27) # => false
定义于 active_support/core_ext/range/overlaps.rb
.
14 Extensions to Proc
14.1 bind
As you surely know Ruby has an UnboundMethod
class whose instances are methods that belong to the limbo of methods without a self. The method Module#instance_method
returns an unbound method for example:
Hash.instance_method(:delete) # => #<UnboundMethod: Hash#delete>
An unbound method is not callable as is, you need to bind it first to an object with bind
:
clear = Hash.instance_method(:clear) clear.bind({a: 1}).call # => {}
Active Support defines Proc#bind
with an analogous purpose:
Proc.new { size }.bind([]).call # => 0
As you see that's callable and bound to the argument, the return value is indeed a Method
.
To do so Proc#bind
actually creates a method under the hood. If you ever see a method with a weird name like __bind_1256598120_237302
in a stack trace you know now where it comes from.
Action Pack uses this trick in rescue_from
for example, which accepts the name of a method and also a proc as callbacks for a given rescued exception. It has to call them in either case, so a bound method is returned by handler_for_rescue
, thus simplifying the code in the caller:
def handler_for_rescue(exception) _, rescuer = Array(rescue_handlers).reverse.detect do |klass_name, handler| ... end case rescuer when Symbol method(rescuer) when Proc rescuer.bind(self) end end
定义于 active_support/core_ext/proc.rb
.
15 Extensions to Date
15.1 Calculations
All the following methods are defined in active_support/core_ext/date/calculations.rb
.
The following calculation methods have edge cases in October 1582, since days 5..14 just do not exist. This guide does not document their behavior around those days for brevity, but it is enough to say that they do what you would expect. That is, Date.new(1582, 10, 4).tomorrow
returns Date.new(1582, 10, 15)
and so on. Please check test/core_ext/date_ext_test.rb
in the Active Support test suite for expected behavior.
15.1.1 Date.current
Active Support defines Date.current
to be today in the current time zone. That's like Date.today
, except that it honors the user time zone, if defined. It also defines Date.yesterday
and Date.tomorrow
, and the instance predicates past?
, today?
, and future?
, all of them relative to Date.current
.
When making Date comparisons using methods which honor the user time zone, make sure to use Date.current
and not Date.today
. There are cases where the user time zone might be in the future compared to the system time zone, which Date.today
uses by default. This means Date.today
may equal Date.yesterday
.
15.1.2 Named dates
15.1.2.1 prev_year
, next_year
In Ruby 1.9 prev_year
and next_year
return a date with the same day/month in the last or next year:
d = Date.new(2010, 5, 8) # => Sat, 08 May 2010 d.prev_year # => Fri, 08 May 2009 d.next_year # => Sun, 08 May 2011
If date is the 29th of February of a leap year, you obtain the 28th:
d = Date.new(2000, 2, 29) # => Tue, 29 Feb 2000 d.prev_year # => Sun, 28 Feb 1999 d.next_year # => Wed, 28 Feb 2001
prev_year
is aliased to last_year
.
15.1.2.2 prev_month
, next_month
In Ruby 1.9 prev_month
and next_month
return the date with the same day in the last or next month:
d = Date.new(2010, 5, 8) # => Sat, 08 May 2010 d.prev_month # => Thu, 08 Apr 2010 d.next_month # => Tue, 08 Jun 2010
If such a day does not exist, the last day of the corresponding month is returned:
Date.new(2000, 5, 31).prev_month # => Sun, 30 Apr 2000 Date.new(2000, 3, 31).prev_month # => Tue, 29 Feb 2000 Date.new(2000, 5, 31).next_month # => Fri, 30 Jun 2000 Date.new(2000, 1, 31).next_month # => Tue, 29 Feb 2000
prev_month
is aliased to last_month
.
15.1.2.3 prev_quarter
, next_quarter
Same as prev_month
and next_month
. It returns the date with the same day in the previous or next quarter:
t = Time.local(2010, 5, 8) # => Sat, 08 May 2010 t.prev_quarter # => Mon, 08 Feb 2010 t.next_quarter # => Sun, 08 Aug 2010
If such a day does not exist, the last day of the corresponding month is returned:
Time.local(2000, 7, 31).prev_quarter # => Sun, 30 Apr 2000 Time.local(2000, 5, 31).prev_quarter # => Tue, 29 Feb 2000 Time.local(2000, 10, 31).prev_quarter # => Mon, 30 Oct 2000 Time.local(2000, 11, 31).next_quarter # => Wed, 28 Feb 2001
prev_quarter
is aliased to last_quarter
.
15.1.2.4 beginning_of_week
, end_of_week
The methods beginning_of_week
and end_of_week
return the dates for the
beginning and end of the week, respectively. Weeks are assumed to start on
Monday, but that can be changed passing an argument, setting thread local
Date.beginning_of_week
or config.beginning_of_week
.
d = Date.new(2010, 5, 8) # => Sat, 08 May 2010 d.beginning_of_week # => Mon, 03 May 2010 d.beginning_of_week(:sunday) # => Sun, 02 May 2010 d.end_of_week # => Sun, 09 May 2010 d.end_of_week(:sunday) # => Sat, 08 May 2010
beginning_of_week
is aliased to at_beginning_of_week
and end_of_week
is aliased to at_end_of_week
.
15.1.2.5 monday
, sunday
The methods monday
and sunday
return the dates for the previous Monday and
next Sunday, respectively.
d = Date.new(2010, 5, 8) # => Sat, 08 May 2010 d.monday # => Mon, 03 May 2010 d.sunday # => Sun, 09 May 2010 d = Date.new(2012, 9, 10) # => Mon, 10 Sep 2012 d.monday # => Mon, 10 Sep 2012 d = Date.new(2012, 9, 16) # => Sun, 16 Sep 2012 d.sunday # => Sun, 16 Sep 2012
15.1.2.6 prev_week
, next_week
The method next_week
receives a symbol with a day name in English (default is the thread local Date.beginning_of_week
, or config.beginning_of_week
, or :monday
) and it returns the date corresponding to that day.
d = Date.new(2010, 5, 9) # => Sun, 09 May 2010 d.next_week # => Mon, 10 May 2010 d.next_week(:saturday) # => Sat, 15 May 2010
The method prev_week
is analogous:
d.prev_week # => Mon, 26 Apr 2010 d.prev_week(:saturday) # => Sat, 01 May 2010 d.prev_week(:friday) # => Fri, 30 Apr 2010
prev_week
is aliased to last_week
.
Both next_week
and prev_week
work as expected when Date.beginning_of_week
or config.beginning_of_week
are set.
15.1.2.7 beginning_of_month
, end_of_month
The methods beginning_of_month
and end_of_month
return the dates for the beginning and end of the month:
d = Date.new(2010, 5, 9) # => Sun, 09 May 2010 d.beginning_of_month # => Sat, 01 May 2010 d.end_of_month # => Mon, 31 May 2010
beginning_of_month
is aliased to at_beginning_of_month
, and end_of_month
is aliased to at_end_of_month
.
15.1.2.8 beginning_of_quarter
, end_of_quarter
The methods beginning_of_quarter
and end_of_quarter
return the dates for the beginning and end of the quarter of the receiver's calendar year:
d = Date.new(2010, 5, 9) # => Sun, 09 May 2010 d.beginning_of_quarter # => Thu, 01 Apr 2010 d.end_of_quarter # => Wed, 30 Jun 2010
beginning_of_quarter
is aliased to at_beginning_of_quarter
, and end_of_quarter
is aliased to at_end_of_quarter
.
15.1.2.9 beginning_of_year
, end_of_year
The methods beginning_of_year
and end_of_year
return the dates for the beginning and end of the year:
d = Date.new(2010, 5, 9) # => Sun, 09 May 2010 d.beginning_of_year # => Fri, 01 Jan 2010 d.end_of_year # => Fri, 31 Dec 2010
beginning_of_year
is aliased to at_beginning_of_year
, and end_of_year
is aliased to at_end_of_year
.
15.1.3 Other Date Computations
15.1.3.1 years_ago
, years_since
The method years_ago
receives a number of years and returns the same date those many years ago:
date = Date.new(2010, 6, 7) date.years_ago(10) # => Wed, 07 Jun 2000
years_since
moves forward in time:
date = Date.new(2010, 6, 7) date.years_since(10) # => Sun, 07 Jun 2020
If such a day does not exist, the last day of the corresponding month is returned:
Date.new(2012, 2, 29).years_ago(3) # => Sat, 28 Feb 2009 Date.new(2012, 2, 29).years_since(3) # => Sat, 28 Feb 2015
15.1.3.2 months_ago
, months_since
The methods months_ago
and months_since
work analogously for months:
Date.new(2010, 4, 30).months_ago(2) # => Sun, 28 Feb 2010 Date.new(2010, 4, 30).months_since(2) # => Wed, 30 Jun 2010
If such a day does not exist, the last day of the corresponding month is returned:
Date.new(2010, 4, 30).months_ago(2) # => Sun, 28 Feb 2010 Date.new(2009, 12, 31).months_since(2) # => Sun, 28 Feb 2010
15.1.3.3 weeks_ago
The method weeks_ago
works analogously for weeks:
Date.new(2010, 5, 24).weeks_ago(1) # => Mon, 17 May 2010 Date.new(2010, 5, 24).weeks_ago(2) # => Mon, 10 May 2010
15.1.3.4 advance
The most generic way to jump to other days is advance
. This method receives a hash with keys :years
, :months
, :weeks
, :days
, and returns a date advanced as much as the present keys indicate:
date = Date.new(2010, 6, 6) date.advance(years: 1, weeks: 2) # => Mon, 20 Jun 2011 date.advance(months: 2, days: -2) # => Wed, 04 Aug 2010
Note in the previous example that increments may be negative.
To perform the computation the method first increments years, then months, then weeks, and finally days. This order is important towards the end of months. Say for example we are at the end of February of 2010, and we want to move one month and one day forward.
The method advance
advances first one month, and then one day, the result is:
Date.new(2010, 2, 28).advance(months: 1, days: 1) # => Sun, 29 Mar 2010
While if it did it the other way around the result would be different:
Date.new(2010, 2, 28).advance(days: 1).advance(months: 1) # => Thu, 01 Apr 2010
15.1.4 Changing Components
The method change
allows you to get a new date which is the same as the receiver except for the given year, month, or day:
Date.new(2010, 12, 23).change(year: 2011, month: 11) # => Wed, 23 Nov 2011
This method is not tolerant to non-existing dates, if the change is invalid ArgumentError
is raised:
Date.new(2010, 1, 31).change(month: 2) # => ArgumentError: invalid date
15.1.5 Durations
Durations can be added to and subtracted from dates:
d = Date.current # => Mon, 09 Aug 2010 d + 1.year # => Tue, 09 Aug 2011 d - 3.hours # => Sun, 08 Aug 2010 21:00:00 UTC +00:00
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
Date.new(1582, 10, 4) + 1.day # => Fri, 15 Oct 1582
15.1.6 Timestamps
The following methods return a Time
object if possible, otherwise a DateTime
. If set, they honor the user time zone.
15.1.6.1 beginning_of_day
, end_of_day
The method beginning_of_day
returns a timestamp at the beginning of the day (00:00:00):
date = Date.new(2010, 6, 7) date.beginning_of_day # => Mon Jun 07 00:00:00 +0200 2010
The method end_of_day
returns a timestamp at the end of the day (23:59:59):
date = Date.new(2010, 6, 7) date.end_of_day # => Mon Jun 07 23:59:59 +0200 2010
beginning_of_day
is aliased to at_beginning_of_day
, midnight
, at_midnight
.
15.1.6.2 beginning_of_hour
, end_of_hour
The method beginning_of_hour
returns a timestamp at the beginning of the hour (hh:00:00):
date = DateTime.new(2010, 6, 7, 19, 55, 25) date.beginning_of_hour # => Mon Jun 07 19:00:00 +0200 2010
The method end_of_hour
returns a timestamp at the end of the hour (hh:59:59):
date = DateTime.new(2010, 6, 7, 19, 55, 25) date.end_of_hour # => Mon Jun 07 19:59:59 +0200 2010
beginning_of_hour
is aliased to at_beginning_of_hour
.
15.1.6.3 beginning_of_minute
, end_of_minute
The method beginning_of_minute
returns a timestamp at the beginning of the minute (hh:mm:00):
date = DateTime.new(2010, 6, 7, 19, 55, 25) date.beginning_of_minute # => Mon Jun 07 19:55:00 +0200 2010
The method end_of_minute
returns a timestamp at the end of the minute (hh:mm:59):
date = DateTime.new(2010, 6, 7, 19, 55, 25) date.end_of_minute # => Mon Jun 07 19:55:59 +0200 2010
beginning_of_minute
is aliased to at_beginning_of_minute
.
beginning_of_hour
, end_of_hour
, beginning_of_minute
and end_of_minute
are implemented for Time
and DateTime
but not Date
as it does not make sense to request the beginning or end of an hour or minute on a Date
instance.
15.1.6.4 ago
, since
The method ago
receives a number of seconds as argument and returns a timestamp those many seconds ago from midnight:
date = Date.current # => Fri, 11 Jun 2010 date.ago(1) # => Thu, 10 Jun 2010 23:59:59 EDT -04:00
Similarly, since
moves forward:
date = Date.current # => Fri, 11 Jun 2010 date.since(1) # => Fri, 11 Jun 2010 00:00:01 EDT -04:00
15.1.7 Other Time Computations
15.2 Conversions
16 Extensions to DateTime
DateTime
is not aware of DST rules and so some of these methods have edge cases when a DST change is going on. For example seconds_since_midnight
might not return the real amount in such a day.
16.1 Calculations
All the following methods are defined in active_support/core_ext/date_time/calculations.rb
.
The class DateTime
is a subclass of Date
so by loading active_support/core_ext/date/calculations.rb
you inherit these methods and their aliases, except that they will always return datetimes:
yesterday tomorrow beginning_of_week (at_beginning_of_week) end_of_week (at_end_of_week) monday sunday weeks_ago prev_week (last_week) next_week months_ago months_since beginning_of_month (at_beginning_of_month) end_of_month (at_end_of_month) prev_month (last_month) next_month beginning_of_quarter (at_beginning_of_quarter) end_of_quarter (at_end_of_quarter) beginning_of_year (at_beginning_of_year) end_of_year (at_end_of_year) years_ago years_since prev_year (last_year) next_year
The following methods are reimplemented so you do not need to load active_support/core_ext/date/calculations.rb
for these ones:
beginning_of_day (midnight, at_midnight, at_beginning_of_day) end_of_day ago since (in)
On the other hand, advance
and change
are also defined and support more options, they are documented below.
The following methods are only implemented in active_support/core_ext/date_time/calculations.rb
as they only make sense when used with a DateTime
instance:
beginning_of_hour (at_beginning_of_hour) end_of_hour
16.1.1 Named Datetimes
16.1.1.1 DateTime.current
Active Support defines DateTime.current
to be like Time.now.to_datetime
, except that it honors the user time zone, if defined. It also defines DateTime.yesterday
and DateTime.tomorrow
, and the instance predicates past?
, and future?
relative to DateTime.current
.
16.1.2 Other Extensions
16.1.2.1 seconds_since_midnight
The method seconds_since_midnight
returns the number of seconds since midnight:
now = DateTime.current # => Mon, 07 Jun 2010 20:26:36 +0000 now.seconds_since_midnight # => 73596
16.1.2.2 utc
The method utc
gives you the same datetime in the receiver expressed in UTC.
now = DateTime.current # => Mon, 07 Jun 2010 19:27:52 -0400 now.utc # => Mon, 07 Jun 2010 23:27:52 +0000
This method is also aliased as getutc
.
16.1.2.3 utc?
The predicate utc?
says whether the receiver has UTC as its time zone:
now = DateTime.now # => Mon, 07 Jun 2010 19:30:47 -0400 now.utc? # => false now.utc.utc? # => true
16.1.2.4 advance
The most generic way to jump to another datetime is advance
. This method receives a hash with keys :years
, :months
, :weeks
, :days
, :hours
, :minutes
, and :seconds
, and returns a datetime advanced as much as the present keys indicate.
d = DateTime.current # => Thu, 05 Aug 2010 11:33:31 +0000 d.advance(years: 1, months: 1, days: 1, hours: 1, minutes: 1, seconds: 1) # => Tue, 06 Sep 2011 12:34:32 +0000
This method first computes the destination date passing :years
, :months
, :weeks
, and :days
to Date#advance
documented above. After that, it adjusts the time calling since
with the number of seconds to advance. This order is relevant, a different ordering would give different datetimes in some edge-cases. The example in Date#advance
applies, and we can extend it to show order relevance related to the time bits.
If we first move the date bits (that have also a relative order of processing, as documented before), and then the time bits we get for example the following computation:
d = DateTime.new(2010, 2, 28, 23, 59, 59) # => Sun, 28 Feb 2010 23:59:59 +0000 d.advance(months: 1, seconds: 1) # => Mon, 29 Mar 2010 00:00:00 +0000
but if we computed them the other way around, the result would be different:
d.advance(seconds: 1).advance(months: 1) # => Thu, 01 Apr 2010 00:00:00 +0000
Since DateTime
is not DST-aware you can end up in a non-existing point in time with no warning or error telling you so.
16.1.3 Changing Components
The method change
allows you to get a new datetime which is the same as the receiver except for the given options, which may include :year
, :month
, :day
, :hour
, :min
, :sec
, :offset
, :start
:
now = DateTime.current # => Tue, 08 Jun 2010 01:56:22 +0000 now.change(year: 2011, offset: Rational(-6, 24)) # => Wed, 08 Jun 2011 01:56:22 -0600
If hours are zeroed, then minutes and seconds are too (unless they have given values):
now.change(hour: 0) # => Tue, 08 Jun 2010 00:00:00 +0000
Similarly, if minutes are zeroed, then seconds are too (unless it has given a value):
now.change(min: 0) # => Tue, 08 Jun 2010 01:00:00 +0000
This method is not tolerant to non-existing dates, if the change is invalid ArgumentError
is raised:
DateTime.current.change(month: 2, day: 30) # => ArgumentError: invalid date
16.1.4 Durations
Durations can be added to and subtracted from datetimes:
now = DateTime.current # => Mon, 09 Aug 2010 23:15:17 +0000 now + 1.year # => Tue, 09 Aug 2011 23:15:17 +0000 now - 1.week # => Mon, 02 Aug 2010 23:15:17 +0000
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
DateTime.new(1582, 10, 4, 23) + 1.hour # => Fri, 15 Oct 1582 00:00:00 +0000
17 Extensions to Time
17.1 Calculations
All the following methods are defined in active_support/core_ext/time/calculations.rb
.
Active Support adds to Time
many of the methods available for DateTime
:
past? today? future? yesterday tomorrow seconds_since_midnight change advance ago since (in) beginning_of_day (midnight, at_midnight, at_beginning_of_day) end_of_day beginning_of_hour (at_beginning_of_hour) end_of_hour beginning_of_week (at_beginning_of_week) end_of_week (at_end_of_week) monday sunday weeks_ago prev_week (last_week) next_week months_ago months_since beginning_of_month (at_beginning_of_month) end_of_month (at_end_of_month) prev_month (last_month) next_month beginning_of_quarter (at_beginning_of_quarter) end_of_quarter (at_end_of_quarter) beginning_of_year (at_beginning_of_year) end_of_year (at_end_of_year) years_ago years_since prev_year (last_year) next_year
They are analogous. Please refer to their documentation above and take into account the following differences:
-
change
accepts an additional:usec
option. -
Time
understands DST, so you get correct DST calculations as in
Time.zone_default # => #<ActiveSupport::TimeZone:0x7f73654d4f38 @utc_offset=nil, @name="Madrid", ...> # In Barcelona, 2010/03/28 02:00 +0100 becomes 2010/03/28 03:00 +0200 due to DST. t = Time.local(2010, 3, 28, 1, 59, 59) # => Sun Mar 28 01:59:59 +0100 2010 t.advance(seconds: 1) # => Sun Mar 28 03:00:00 +0200 2010
- If
since
orago
jump to a time that can't be expressed withTime
aDateTime
object is returned instead.
17.1.1 Time.current
Active Support defines Time.current
to be today in the current time zone. That's like Time.now
, except that it honors the user time zone, if defined. It also defines the instance predicates past?
, today?
, and future?
, all of them relative to Time.current
.
When making Time comparisons using methods which honor the user time zone, make sure to use Time.current
instead of Time.now
. There are cases where the user time zone might be in the future compared to the system time zone, which Time.now
uses by default. This means Time.now.to_date
may equal Date.yesterday
.
17.1.2 all_day
, all_week
, all_month
, all_quarter
and all_year
The method all_day
returns a range representing the whole day of the current time.
now = Time.current # => Mon, 09 Aug 2010 23:20:05 UTC +00:00 now.all_day # => Mon, 09 Aug 2010 00:00:00 UTC +00:00..Mon, 09 Aug 2010 23:59:59 UTC +00:00
Analogously, all_week
, all_month
, all_quarter
and all_year
all serve the purpose of generating time ranges.
now = Time.current # => Mon, 09 Aug 2010 23:20:05 UTC +00:00 now.all_week # => Mon, 09 Aug 2010 00:00:00 UTC +00:00..Sun, 15 Aug 2010 23:59:59 UTC +00:00 now.all_week(:sunday) # => Sun, 16 Sep 2012 00:00:00 UTC +00:00..Sat, 22 Sep 2012 23:59:59 UTC +00:00 now.all_month # => Sat, 01 Aug 2010 00:00:00 UTC +00:00..Tue, 31 Aug 2010 23:59:59 UTC +00:00 now.all_quarter # => Thu, 01 Jul 2010 00:00:00 UTC +00:00..Thu, 30 Sep 2010 23:59:59 UTC +00:00 now.all_year # => Fri, 01 Jan 2010 00:00:00 UTC +00:00..Fri, 31 Dec 2010 23:59:59 UTC +00:00
17.2 Time Constructors
Active Support defines Time.current
to be Time.zone.now
if there's a user time zone defined, with fallback to Time.now
:
Time.zone_default # => #<ActiveSupport::TimeZone:0x7f73654d4f38 @utc_offset=nil, @name="Madrid", ...> Time.current # => Fri, 06 Aug 2010 17:11:58 CEST +02:00
Analogously to DateTime
, the predicates past?
, and future?
are relative to Time.current
.
If the time to be constructed lies beyond the range supported by Time
in the runtime platform, usecs are discarded and a DateTime
object is returned instead.
17.2.1 Durations
Durations can be added to and subtracted from time objects:
now = Time.current # => Mon, 09 Aug 2010 23:20:05 UTC +00:00 now + 1.year # => Tue, 09 Aug 2011 23:21:11 UTC +00:00 now - 1.week # => Mon, 02 Aug 2010 23:21:11 UTC +00:00
They translate to calls to since
or advance
. For example here we get the correct jump in the calendar reform:
Time.utc(1582, 10, 3) + 5.days # => Mon Oct 18 00:00:00 UTC 1582
18 Extensions to File
18.1 atomic_write
With the class method File.atomic_write
you can write to a file in a way that will prevent any reader from seeing half-written content.
The name of the file is passed as an argument, and the method yields a file handle opened for writing. Once the block is done atomic_write
closes the file handle and completes its job.
For example, Action Pack uses this method to write asset cache files like all.css
:
File.atomic_write(joined_asset_path) do |cache| cache.write(join_asset_file_contents(asset_paths)) end
To accomplish this atomic_write
creates a temporary file. That's the file the code in the block actually writes to. On completion, the temporary file is renamed, which is an atomic operation on POSIX systems. If the target file exists atomic_write
overwrites it and keeps owners and permissions. However there are a few cases where atomic_write
cannot change the file ownership or permissions, this error is caught and skipped over trusting in the user/filesystem to ensure the file is accessible to the processes that need it.
Due to the chmod operation atomic_write
performs, if the target file has an ACL set on it this ACL will be recalculated/modified.
Note you can't append with atomic_write
.
The auxiliary file is written in a standard directory for temporary files, but you can pass a directory of your choice as second argument.
定义于 active_support/core_ext/file/atomic.rb
.
19 Extensions to Marshal
19.1 load
Active Support adds constant autoloading support to load
.
For example, the file cache store deserializes this way:
File.open(file_name) { |f| Marshal.load(f) }
If the cached data refers to a constant that is unknown at that point, the autoloading mechanism is triggered and if it succeeds the deserialization is retried transparently.
If the argument is an IO
it needs to respond to rewind
to be able to retry. Regular files respond to rewind
.
定义于 active_support/core_ext/marshal.rb
.
20 Extensions to Logger
20.1 around_[level]
Takes two arguments, a before_message
and after_message
and calls the current level method on the Logger
instance, passing in the before_message
, then the specified message, then the after_message
:
logger = Logger.new("log/development.log") logger.around_info("before", "after") { |logger| logger.info("during") }
20.2 silence
Silences every log level lesser to the specified one for the duration of the given block. Log level orders are: debug, info, error and fatal.
logger = Logger.new("log/development.log") logger.silence(Logger::INFO) do logger.debug("In space, no one can hear you scream.") logger.info("Scream all you want, small mailman!") end
20.3 datetime_format=
Modifies the datetime format output by the formatter class associated with this logger. If the formatter class does not have a datetime_format
method then this is ignored.
class Logger::FormatWithTime < Logger::Formatter cattr_accessor(:datetime_format) { "%Y%m%d%H%m%S" } def self.call(severity, timestamp, progname, msg) "#{timestamp.strftime(datetime_format)} -- #{String === msg ? msg : msg.inspect}\n" end end logger = Logger.new("log/development.log") logger.formatter = Logger::FormatWithTime logger.info("<- is the current time")
定义于 active_support/core_ext/logger.rb
.
21 Extensions to NameError
Active Support adds missing_name?
to NameError
, which tests whether the exception was raised because of the name passed as argument.
The name may be given as a symbol or string. A symbol is tested against the bare constant name, a string is against the fully-qualified constant name.
A symbol can represent a fully-qualified constant name as in :"ActiveRecord::Base"
, so the behavior for symbols is defined for convenience, not because it has to be that way technically.
For example, when an action of ArticlesController
is called Rails tries optimistically to use ArticlesHelper
. It is OK that the helper module does not exist, so if an exception for that constant name is raised it should be silenced. But it could be the case that articles_helper.rb
raises a NameError
due to an actual unknown constant. That should be reraised. The method missing_name?
provides a way to distinguish both cases:
def default_helper_module! module_name = name.sub(/Controller$/, '') module_path = module_name.underscore helper module_path rescue MissingSourceFile => e raise e unless e.is_missing? "helpers/#{module_path}_helper" rescue NameError => e raise e unless e.missing_name? "#{module_name}Helper" end
定义于 active_support/core_ext/name_error.rb
.
22 Extensions to LoadError
Active Support adds is_missing?
to LoadError
, and also assigns that class to the constant MissingSourceFile
for backwards compatibility.
Given a path name is_missing?
tests whether the exception was raised due to that particular file (except perhaps for the ".rb" extension).
For example, when an action of ArticlesController
is called Rails tries to load articles_helper.rb
, but that file may not exist. That's fine, the helper module is not mandatory so Rails silences a load error. But it could be the case that the helper module does exist and in turn requires another library that is missing. In that case Rails must reraise the exception. The method is_missing?
provides a way to distinguish both cases:
def default_helper_module! module_name = name.sub(/Controller$/, '') module_path = module_name.underscore helper module_path rescue MissingSourceFile => e raise e unless e.is_missing? "helpers/#{module_path}_helper" rescue NameError => e raise e unless e.missing_name? "#{module_name}Helper" end
定义于 active_support/core_ext/load_error.rb
.
反馈
欢迎帮忙改善指南质量。
如发现任何错误,欢迎修正。开始贡献前,可先行阅读贡献指南:文档。
翻译如有错误,深感抱歉,欢迎 Fork 修正,或至此处回报。
文章可能有未完成或过时的内容。请先检查 Edge Guides 来确定问题在 master 是否已经修掉了。再上 master 补上缺少的文件。内容参考 Ruby on Rails 指南准则来了解行文风格。
最后,任何关于 Ruby on Rails 文档的讨论,欢迎到 rubyonrails-docs 邮件群组。